Atomic Scale Formation Mechanism of Edge Dislocation Relieving Lattice Strain in a GeSi overlayer on Si(001)

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMaras, E.en_US
dc.contributor.authorPizzagalli, L.en_US
dc.contributor.authorAla-Nissilä, Tapioen_US
dc.contributor.authorJónsson, H.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.contributor.organizationUniversité de Poitiersen_US
dc.contributor.organizationUniversity of Icelanden_US
dc.date.accessioned2017-10-13T10:32:59Z
dc.date.available2017-10-13T10:32:59Z
dc.date.issued2017-12-01en_US
dc.description.abstractUnderstanding how edge misfit dislocations (MDs) form in a GeSi/Si(001) film has been a long standing issue. The challenge is to find a mechanism accounting for the presence of these dislocations at the interface since they are not mobile and cannot nucleate at the surface and glide towards the interface. Furthermore, experiments can hardly detect the nucleation and early stages of growth because of the short time scale involved. Here we present the first semi-quantitative atomistic calculation of the formation of edge dislocations in such films. We use a global optimization method and density functional theory calculations, combined with computations using potential energy functions to identify the best mechanisms. We show that those previously suggested are relevant only for a low film strain and we propose a new mechanism which accounts for the formation of edge dislocations at high film strain. In this one, a 60° MD nucleates as a "split" half-loop with two branches gliding on different planes. One branch belongs to the glide plane of a complementary 60° MD and therefore strongly favors the formation of the complementary MD which is immediately combined with the first MD to form an edge MD.en
dc.description.versionPeer revieweden
dc.format.extent1-9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMaras, E, Pizzagalli, L, Ala-Nissilä, T & Jónsson, H 2017, ' Atomic Scale Formation Mechanism of Edge Dislocation Relieving Lattice Strain in a GeSi overlayer on Si(001) ', Scientific Reports, vol. 7, no. 1, 11966, pp. 1-9 . https://doi.org/10.1038/s41598-017-12009-yen
dc.identifier.doi10.1038/s41598-017-12009-yen_US
dc.identifier.issn2045-2322
dc.identifier.otherPURE UUID: 361a07f7-e2f7-46c2-8ccd-ee82c49da87cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/361a07f7-e2f7-46c2-8ccd-ee82c49da87cen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85029658082&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/15387844/s41598_017_12009_y.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/28152
dc.identifier.urnURN:NBN:fi:aalto-201710137013
dc.language.isoenen
dc.relation.ispartofseriesScientific Reportsen
dc.relation.ispartofseriesVolume 7, issue 1en
dc.rightsopenAccessen
dc.titleAtomic Scale Formation Mechanism of Edge Dislocation Relieving Lattice Strain in a GeSi overlayer on Si(001)en
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files