Electron waiting times of a periodically driven single-electron turnstile
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Authors
Date
2017-07-17
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
1-10
Series
Physical Review B, Volume 96, issue 4
Abstract
We investigate the distribution of waiting times between electrons emitted from a periodically driven single-electron turnstile. To this end, we develop a scheme for analytic calculations of the waiting time distributions for arbitrary periodic driving protocols. We illustrate the general framework by considering a driven tunnel junction before moving on to the more involved single-electron turnstile. The waiting time distributions are evaluated at low temperatures for square-wave and harmonic driving protocols. In the adiabatic regime, the dynamics of the turnstile is synchronized with the external drive. As the nonadiabatic regime is approached, the waiting time distribution becomes dominated by cycle-missing events in which the turnstile fails to emit within one or several periods. We also discuss the influence of finite electronic temperatures. The waiting time distributions provide a useful characterization of the driven single-electron turnstile with complementary information compared to what can be learned from conventional current measurements.Description
Keywords
Other note
Citation
Potanina, E & Flindt, C 2017, ' Electron waiting times of a periodically driven single-electron turnstile ', Physical Review B, vol. 96, no. 4, 045420, pp. 1-10 . https://doi.org/10.1103/PhysRevB.96.045420