Generalized Kakeya sets for polynomial evaluation and faster computation of fermionants

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBjörklund, Andreasen_US
dc.contributor.authorKaski, Petterien_US
dc.contributor.authorWilliams, Ryanen_US
dc.contributor.departmentLund Universityen_US
dc.contributor.departmentProfessorship Kaski Petterien_US
dc.contributor.departmentMassachusetts Institute of Technology MITen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.date.accessioned2018-05-22T14:37:07Z
dc.date.available2018-05-22T14:37:07Z
dc.date.issued2018-02-01en_US
dc.description.abstractWe present two new data structures for computing values of an n-variate polynomial P of degree at most d over a finite field of q elements. Assuming that d divides q-1, our first data structure relies on (d+1)n+2 tabulated values of P to produce the value of P at any of the qn points using O(nqd2) arithmetic operations in the finite field. Assuming that s divides d and d/s divides q-1, our second data structure assumes that P satisfies a degree-separability condition and relies on (d/s + 1)n+s tabulated values to produce the value of P at any point using O(nqssq) arithmetic operations. Our data structures are based on generalizing upper-bound constructions due to Mockenhaupt and Tao (2004), Saraf and Sudan (2008), and Dvir (2009) for Kakeya sets in finite vector spaces from linear to higher-degree polynomial curves. As an application we show that the new data structures enable a faster algorithm for computing integer-valued fermionants, a family of self-reducible polynomial functions introduced by Chandrasekharan and Wiese (2011) that captures numerous fundamental algebraic and combinatorial invariants such as the determinant, the permanent, the number of Hamiltonian cycles in a directed multigraph, as well as certain partition functions of strongly correlated electron systems in statistical physics. In particular, a corollary of our main theorem for fermionants is that the permanent of an m × m integer matrix with entries bounded in absolute value by a constant can be computed in time 2m-Ω(√m/log log m), improving an earlier algorithm of Björklund (2016) that runs in time 2m-Ω(√m/logm).en
dc.description.versionPeer revieweden
dc.format.extent1-13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBjörklund , A , Kaski , P & Williams , R 2018 , Generalized Kakeya sets for polynomial evaluation and faster computation of fermionants . in 12th International Symposium on Parameterized and Exact Computation, IPEC 2017 . , 6 , Leibniz International Proceedings in Informatics , vol. 89 , Schloss Dagstuhl - Leibniz-Zentrum für Informatik , pp. 1-13 , International Symposium on Parameterized and Exact Computation , Vienna , Austria , 06/09/2017 . https://doi.org/10.4230/LIPIcs.IPEC.2017.6en
dc.identifier.doi10.4230/LIPIcs.IPEC.2017.6en_US
dc.identifier.isbn9783959770514
dc.identifier.issn1868-8969
dc.identifier.otherPURE UUID: 5be4855b-31d5-438a-a7ed-b11d3e8908afen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/5be4855b-31d5-438a-a7ed-b11d3e8908afen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85044722946&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/18927108/LIPIcs_IPEC_2017_6.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/30929
dc.identifier.urnURN:NBN:fi:aalto-201805222369
dc.language.isoenen
dc.publisherSchloss Dagstuhl - Leibniz-Zentrum fuer Informatik GmbH
dc.relation.ispartofInternational Symposium on Parameterized and Exact Computationen
dc.relation.ispartofseries12th International Symposium on Parameterized and Exact Computation, IPEC 2017en
dc.relation.ispartofseriesLeibniz International Proceedings in Informaticsen
dc.relation.ispartofseriesVolume 89en
dc.rightsopenAccessen
dc.subject.keywordBesicovitch seten_US
dc.subject.keywordFermionanten_US
dc.subject.keywordFinite fielden_US
dc.subject.keywordFinite vector spaceen_US
dc.subject.keywordHamiltonian cycleen_US
dc.subject.keywordHomogeneous polynomialen_US
dc.subject.keywordKakeya seten_US
dc.subject.keywordPermanenten_US
dc.subject.keywordPolynomial evaluationen_US
dc.subject.keywordTabulationen_US
dc.titleGeneralized Kakeya sets for polynomial evaluation and faster computation of fermionantsen
dc.typeConference article in proceedingsfi
dc.type.versionpublishedVersion
Files