Substorm Current Wedge Revisited

Loading...
Thumbnail Image

Access rights

© The Authors 2014. This article is published with open access at Springerlink.com

URL

Journal Title

Journal ISSN

Volume Title

School of Electrical Engineering | B1 Kirjoitus tieteellisessä aikakauslehdessä

Date

Department

Major/Subject

Mcode

Degree programme

Language

en

Pages

46 p.

Series

Space Science Reviews. 4 December 2014

Abstract

Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.

Description

Other note

Citation

Kepko, Larry. & McPherron, R. L. & Amm, O. & Apatenkov, S. & Baumjohann, W. & Birn, J. & Lester, M. & Nakamura, R. & Pulkkinen, T. I. & Sergeev, V. 2014. Substorm Current Wedge Revisited. Space Science Reviews, nro 4, December 2014. P. 46 p. 1572-9672 (electronic). DOI: 10.1007/s11214-014-0124-9