A synthetic biological quantum optical system

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLishchuk, Anna
dc.contributor.authorKodali, Goutham
dc.contributor.authorMancini, Joshua A.
dc.contributor.authorBroadbent, Matthew
dc.contributor.authorDarroch, Brice
dc.contributor.authorMass, Olga A.
dc.contributor.authorNabok, Alexei
dc.contributor.authorDutton, P. Leslie
dc.contributor.authorHunter, C. Neil
dc.contributor.authorTörmä, Päivi
dc.contributor.authorLeggett, Graham J.
dc.contributor.departmentUniversity of Sheffield
dc.contributor.departmentUniversity of Pennsylvania
dc.contributor.departmentNorth Carolina State University
dc.contributor.departmentSheffield Hallam University
dc.contributor.departmentQuantum Dynamics
dc.contributor.departmentDepartment of Applied Physicsen
dc.date.accessioned2018-08-21T13:45:53Z
dc.date.available2018-08-21T13:45:53Z
dc.date.issued2018-07-21
dc.description.abstractIn strong plasmon-exciton coupling, a surface plasmon mode is coupled to an array of localized emitters to yield new hybrid light-matter states (plexcitons), whose properties may in principle be controlled via modification of the arrangement of emitters. We show that plasmon modes are strongly coupled to synthetic light-harvesting maquette proteins, and that the coupling can be controlled via alteration of the protein structure. For maquettes with a single chlorin binding site, the exciton energy (2.06 ± 0.07 eV) is close to the expected energy of the Qy transition. However, for maquettes containing two chlorin binding sites that are collinear in the field direction, an exciton energy of 2.20 ± 0.01 eV is obtained, intermediate between the energies of the Qx and Qy transitions of the chlorin. This observation is attributed to strong coupling of the LSPR to an H-dimer state not observed under weak coupling.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.extent13064-13073
dc.format.mimetypeapplication/pdf
dc.identifier.citationLishchuk , A , Kodali , G , Mancini , J A , Broadbent , M , Darroch , B , Mass , O A , Nabok , A , Dutton , P L , Hunter , C N , Törmä , P & Leggett , G J 2018 , ' A synthetic biological quantum optical system ' , Nanoscale , vol. 10 , no. 27 , pp. 13064-13073 . https://doi.org/10.1039/c8nr02144aen
dc.identifier.doi10.1039/c8nr02144a
dc.identifier.issn2040-3364
dc.identifier.issn2040-3372
dc.identifier.otherPURE UUID: 873ffa98-3d7a-4e97-963f-ba4532566427
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/873ffa98-3d7a-4e97-963f-ba4532566427
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85050032864&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/27166683/c8nr02144a.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/33522
dc.identifier.urnURN:NBN:fi:aalto-201808214655
dc.language.isoenen
dc.relation.ispartofseriesNanoscaleen
dc.relation.ispartofseriesVolume 10, issue 27en
dc.rightsopenAccessen
dc.titleA synthetic biological quantum optical systemen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files