Development of an Extended ASM3 Model for Predicting the Nitrous Oxide Emissions in a Full-Scale Wastewater Treatment Plant

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBlomberg, Katien_US
dc.contributor.authorKosse, Pascalen_US
dc.contributor.authorMikola, Annaen_US
dc.contributor.authorKuokkanen, Annaen_US
dc.contributor.authorFred, Tommien_US
dc.contributor.authorHeinonen, Marien_US
dc.contributor.authorMulas, Michelaen_US
dc.contributor.authorLübken, Manfreden_US
dc.contributor.authorWichern, Marcen_US
dc.contributor.authorVahala, Rikuen_US
dc.contributor.departmentDepartment of Built Environmenten
dc.contributor.groupauthorWater and Environmental Engineeringen
dc.contributor.organizationRuhr-Universität Bochumen_US
dc.contributor.organizationHelsinki Region Environmental Services Authority HSYen_US
dc.contributor.organizationFederal University of Cearáen_US
dc.date.accessioned2018-06-29T12:49:55Z
dc.date.available2018-06-29T12:49:55Z
dc.date.issued2018-05-15en_US
dc.description.abstractAn Activated Sludge Model #3 (ASM3) based, pseudomechanistic model describing nitrous oxide (N2O) production was created in this study to provide more insight into the dynamics of N2O production, consumption, and emissions at a full-scale wastewater treatment plant (WWTP). N2O emissions at the studied WWTP are monitored throughout the plant with a Fourier transform infrared analyzer, while the developed model encountered N2O production in the biological reactors via both ammonia oxidizing bacteria (AOB) nitrification and heterotrophic denitrifiers. Additionally, the stripping of N2O was included by applying a K(L)a-based approach that has not been widely used before. The objective was to extend the existing ASM3-based model of the plant and assess how well the full-scale emissions could be predicted with the selected model. The validity and applicability of the model were tested by comparing the simulation results with the comprehensive online data. The results show that the ASM3-based model can be successfully extended and applied to modeling N2O production and emissions at a full-scale WWTP. These results demonstrate that the biological reactor can explain most of the N2O emissions at the plant, but a significant proportion of the liquid-phase N2O is further transferred during the process.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.extent5803-5811
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBlomberg, K, Kosse, P, Mikola, A, Kuokkanen, A, Fred, T, Heinonen, M, Mulas, M, Lübken, M, Wichern, M & Vahala, R 2018, ' Development of an Extended ASM3 Model for Predicting the Nitrous Oxide Emissions in a Full-Scale Wastewater Treatment Plant ', Environmental Science and Technology, vol. 52, no. 10, pp. 5803-5811 . https://doi.org/10.1021/acs.est.8b00386en
dc.identifier.doi10.1021/acs.est.8b00386en_US
dc.identifier.issn0013-936X
dc.identifier.otherPURE UUID: e6d0bfcd-b141-4270-a0ad-5ebd25ef82c5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/e6d0bfcd-b141-4270-a0ad-5ebd25ef82c5en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/53731505/acs.est.8b00386.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/32617
dc.identifier.urnURN:NBN:fi:aalto-201806294027
dc.language.isoenen
dc.relation.ispartofseriesENVIRONMENTAL SCIENCE AND TECHNOLOGYen
dc.relation.ispartofseriesVolume 52, issue 10en
dc.rightsopenAccessen
dc.subject.keywordAMMONIA-OXIDIZING BACTERIAen_US
dc.subject.keywordN2O EMISSIONSen_US
dc.subject.keywordMATHEMATICAL-MODELSen_US
dc.subject.keywordDISSOLVED-OXYGENen_US
dc.subject.keywordDENITRIFICATIONen_US
dc.subject.keywordNITRIFICATIONen_US
dc.subject.keywordACCUMULATIONen_US
dc.subject.keywordOXIDATIONen_US
dc.subject.keywordBIOGASen_US
dc.titleDevelopment of an Extended ASM3 Model for Predicting the Nitrous Oxide Emissions in a Full-Scale Wastewater Treatment Planten
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files