A Complete Process For Shipborne Sea-Ice Field Analysis Using Machine Vision

Loading...
Thumbnail Image
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
Conference article
Date
2020-11
Major/Subject
Mcode
Degree programme
Language
en
Pages
7
14539-14545
Series
IFAC-PapersOnLine, Volume 53, issue 2
Abstract
A sensor instrumentation and an automated process are proposed for sea-ice field analysis using ship mounted machine vision cameras with the help of inertial and satellite positioning sensors. The proposed process enables automated acquisition of sea-ice concentration, floes size and distribution. The process contains pre-processing steps such as sensor calibration, distortion removal, orthorectification of image data, and data extraction steps such as sea-ice floe clustering, detection, and analysis. In addition, we improve the state of the art of floe clustering and detection, by using an enhanced version of the k-means algorithm and the blue colour channel for increased contrast in ice detection. Comparing to manual visual observations, the proposed method gives significantly more detailed and frequent data about the size and distribution of individual floes. Through our initial experiments in pack ice conditions,the proposed system has proved to be able to segment most of the individual floes and estimate their size and area.
Description
Keywords
machine vision, Sea-ice, k-means, dynamic thresholding, IMU, sensor integration, Decision Support System (DSS)
Other note
Citation
Sandru, A, Hyyti, H, Visala, A & Kujala, P 2020, ' A Complete Process For Shipborne Sea-Ice Field Analysis Using Machine Vision ', IFAC-PapersOnLine, vol. 53, no. 2, pp. 14539-14545 . https://doi.org/10.1016/j.ifacol.2020.12.1458