Root vectors of polynomial and rational matrices: Theory and computation

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNoferini, Vannien_US
dc.contributor.authorVan Dooren, Paulen_US
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.groupauthorMathematical Statistics and Data Scienceen
dc.contributor.groupauthorAlgebra and Discrete Mathematicsen
dc.contributor.groupauthorNumerical Analysisen
dc.contributor.organizationUniversité Catholique de Louvainen_US
dc.date.accessioned2022-12-14T10:18:33Z
dc.date.available2022-12-14T10:18:33Z
dc.date.issued2023-01-01en_US
dc.descriptionFunding Information: Supported by an Academy of Finland grant (Suomen Akatemian päätös 331240).Supported by an Aalto Science Institute Visitor Programme. Publisher Copyright: © 2022 The Author(s)
dc.description.abstractThe notion of root polynomials of a polynomial matrix P(λ) was thoroughly studied in Dopico and Noferini (2020) [6]. In this paper, we extend such a systematic approach to general rational matrices R(λ), possibly singular and possibly with coalescent pole/zero pairs. We discuss the related theory for rational matrices with coefficients in an arbitrary field. As a byproduct, we obtain sensible definitions of eigenvalues and eigenvectors of a rational matrix R(λ), without any need to assume that R(λ) has full column rank or that the eigenvalue is not also a pole. Then, we specialize to the complex field and provide a practical algorithm to compute them, based on the construction of a minimal state space realization of the rational matrix R(λ) and then using the staircase algorithm on the linearized pencil to compute the null space as well as the root polynomials in a given point λ0. If λ0 is also a pole, then it is necessary to apply a preprocessing step that removes the pole while making it possible to recover the root vectors of the original matrix: in this case, we study both the relevant theory (over a general field) and an algorithmic implementation (over the complex field), still based on minimal state space realizations.en
dc.description.versionPeer revieweden
dc.format.extent31
dc.format.extent510-540
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNoferini, V & Van Dooren, P 2023, ' Root vectors of polynomial and rational matrices: Theory and computation ', Linear Algebra and Its Applications, vol. 656, pp. 510-540 . https://doi.org/10.1016/j.laa.2022.10.013en
dc.identifier.doi10.1016/j.laa.2022.10.013en_US
dc.identifier.issn0024-3795
dc.identifier.otherPURE UUID: b7b5ee9e-8675-4dae-97cb-d6de80e26964en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b7b5ee9e-8675-4dae-97cb-d6de80e26964en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85140745386&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/94186850/Root_vectors_of_polynomial_and_rational_matrices.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118188
dc.identifier.urnURN:NBN:fi:aalto-202212146928
dc.language.isoenen
dc.publisherELSEVIER SCIENCE INC
dc.relation.ispartofseriesLinear Algebra and Its Applicationsen
dc.relation.ispartofseriesVolume 656en
dc.rightsopenAccessen
dc.subject.keywordCoalescent pole/zeroen_US
dc.subject.keywordEigenvalueen_US
dc.subject.keywordEigenvectoren_US
dc.subject.keywordLocal Smith formen_US
dc.subject.keywordMaximal seten_US
dc.subject.keywordMinimal basisen_US
dc.subject.keywordRational matrixen_US
dc.subject.keywordRoot polynomialen_US
dc.subject.keywordRoot vectoren_US
dc.subject.keywordSmith formen_US
dc.titleRoot vectors of polynomial and rational matrices: Theory and computationen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files