Root vectors of polynomial and rational matrices: Theory and computation
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Noferini, Vanni | en_US |
dc.contributor.author | Van Dooren, Paul | en_US |
dc.contributor.department | Department of Mathematics and Systems Analysis | en |
dc.contributor.groupauthor | Mathematical Statistics and Data Science | en |
dc.contributor.groupauthor | Algebra and Discrete Mathematics | en |
dc.contributor.groupauthor | Numerical Analysis | en |
dc.contributor.organization | Université Catholique de Louvain | en_US |
dc.date.accessioned | 2022-12-14T10:18:33Z | |
dc.date.available | 2022-12-14T10:18:33Z | |
dc.date.issued | 2023-01-01 | en_US |
dc.description | Funding Information: Supported by an Academy of Finland grant (Suomen Akatemian päätös 331240).Supported by an Aalto Science Institute Visitor Programme. Publisher Copyright: © 2022 The Author(s) | |
dc.description.abstract | The notion of root polynomials of a polynomial matrix P(λ) was thoroughly studied in Dopico and Noferini (2020) [6]. In this paper, we extend such a systematic approach to general rational matrices R(λ), possibly singular and possibly with coalescent pole/zero pairs. We discuss the related theory for rational matrices with coefficients in an arbitrary field. As a byproduct, we obtain sensible definitions of eigenvalues and eigenvectors of a rational matrix R(λ), without any need to assume that R(λ) has full column rank or that the eigenvalue is not also a pole. Then, we specialize to the complex field and provide a practical algorithm to compute them, based on the construction of a minimal state space realization of the rational matrix R(λ) and then using the staircase algorithm on the linearized pencil to compute the null space as well as the root polynomials in a given point λ0. If λ0 is also a pole, then it is necessary to apply a preprocessing step that removes the pole while making it possible to recover the root vectors of the original matrix: in this case, we study both the relevant theory (over a general field) and an algorithmic implementation (over the complex field), still based on minimal state space realizations. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 31 | |
dc.format.extent | 510-540 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Noferini, V & Van Dooren, P 2023, ' Root vectors of polynomial and rational matrices: Theory and computation ', Linear Algebra and Its Applications, vol. 656, pp. 510-540 . https://doi.org/10.1016/j.laa.2022.10.013 | en |
dc.identifier.doi | 10.1016/j.laa.2022.10.013 | en_US |
dc.identifier.issn | 0024-3795 | |
dc.identifier.other | PURE UUID: b7b5ee9e-8675-4dae-97cb-d6de80e26964 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/b7b5ee9e-8675-4dae-97cb-d6de80e26964 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85140745386&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/94186850/Root_vectors_of_polynomial_and_rational_matrices.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/118188 | |
dc.identifier.urn | URN:NBN:fi:aalto-202212146928 | |
dc.language.iso | en | en |
dc.publisher | ELSEVIER SCIENCE INC | |
dc.relation.ispartofseries | Linear Algebra and Its Applications | en |
dc.relation.ispartofseries | Volume 656 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Coalescent pole/zero | en_US |
dc.subject.keyword | Eigenvalue | en_US |
dc.subject.keyword | Eigenvector | en_US |
dc.subject.keyword | Local Smith form | en_US |
dc.subject.keyword | Maximal set | en_US |
dc.subject.keyword | Minimal basis | en_US |
dc.subject.keyword | Rational matrix | en_US |
dc.subject.keyword | Root polynomial | en_US |
dc.subject.keyword | Root vector | en_US |
dc.subject.keyword | Smith form | en_US |
dc.title | Root vectors of polynomial and rational matrices: Theory and computation | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |