Fermionic Quartet and Vestigial Gravity

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2024-02
Major/Subject
Mcode
Degree programme
Language
en
Pages
5
Series
JETP Letters, Volume 119, issue 4, pp. 330-334
Abstract
We discuss the two-step transitions in superconductors, where the intermediate state between the Cooper pair state and the normal metal is the 4-fermion condensate, which is called the intertwined vestigial order. We discuss different types of the vestigial order, which are possible in the spin-triplet superfluid 3He, and the topological objects in the vestigial phases. Since in 3He the order parameter Aαi represents the analog of gravitational tetrads, we suggest that the vestigial states are possible in quantum gravity. As in superconductors, the fermionic vacuum can experience two consequent phase transitions. At first transition the metric appears as the bilinear combination of tetrads gμν = ηab〈〉, while the tetrad order parameter is still absent, = 〈〉 = 0. This corresponds to the bosonic Einstein general relativity, which emerges in the fermionic vacuum. The nonzero tetrads = 〈〉 ≠ 0 appear at the second transition, where a kind of the Einstein–Cartan–Sciama–Kibble tetrad gravity is formed. This suggests that on the levels of particles, gravity acts with different strength on fermions and bosons.
Description
Publisher Copyright: © The Author(s) 2024. ISSN 0021-3640, JETP Letters, 2024. The Author(s), 2024. This article is an open access publication.
Keywords
Other note
Citation
Volovik, G E 2024, ' Fermionic Quartet and Vestigial Gravity ', JETP Letters, vol. 119, no. 4, pp. 330-334 . https://doi.org/10.1134/S002136402460006X