Investigation of the fracture mechanism of level ice with extended finite element method

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorXu, Yingen_US
dc.contributor.authorWu, Jiamengen_US
dc.contributor.authorLi, Pingshuen_US
dc.contributor.authorKujala, Penttien_US
dc.contributor.authorHu, Zhiqiangen_US
dc.contributor.authorChen, Gangen_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.groupauthorMarine Technologyen
dc.contributor.organizationMarine Design and Research Institute of Chinaen_US
dc.contributor.organizationNewcastle Universityen_US
dc.date.accessioned2022-09-07T08:47:42Z
dc.date.available2022-09-07T08:47:42Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2024-08-03en_US
dc.date.issued2022-09-15en_US
dc.descriptionFunding Information: This project has been supported by the Open Fund Project of State Key Laboratoty of Ocean Engineering (grant ID: GKZD010084 ). Publisher Copyright: © 2022 Elsevier Ltd
dc.description.abstractThis paper investigates the fracture mechanism of level ice based on the extended finite element method by simulating collision scenarios between ice and a rigid ship structure. It is found the collision velocity and structure inclination affect the fracture mode through changing the deformation and stress distribution of the level ice. The overall response of the level ice is simulated with the transversely isotropic material model and cohesive zone model. The numerical model is verified with the data from a field test, which shows that the obtained ice load and size of the broken ices from numerical method are well consistent with the tested data. Two fracture modes of the level ice, bending and splitting, appear in the simulated cases. The bending crack is found to emerge from the top surface of the level ice and expand along the circumferential direction, and the splitting crack initiates at the bottom edge of the level ice and expands along the radial direction. Deformation and multiple stresses of level ice are analyzed, showing that the initial cracks for both fracture modes are related to the local tensile failure, and the location of the maximum tensile hydrostatic stress always coincides with the initial crack.en
dc.description.versionPeer revieweden
dc.format.extent16
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationXu, Y, Wu, J, Li, P, Kujala, P, Hu, Z & Chen, G 2022, ' Investigation of the fracture mechanism of level ice with extended finite element method ', Ocean Engineering, vol. 260, 112048 . https://doi.org/10.1016/j.oceaneng.2022.112048en
dc.identifier.doi10.1016/j.oceaneng.2022.112048en_US
dc.identifier.issn0029-8018
dc.identifier.issn1873-5258
dc.identifier.otherPURE UUID: 99b58deb-27e7-4893-a8f6-b8cff677c0f5en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/99b58deb-27e7-4893-a8f6-b8cff677c0f5en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85135287155&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/87298982/ENG_Xi_et_al_Investigation_of_the_fracture_mechanism_Ocean_Engineering.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/116572
dc.identifier.urnURN:NBN:fi:aalto-202209075382
dc.language.isoenen
dc.publisherPERGAMON-ELSEVIER SCIENCE LTD
dc.relation.ispartofseriesOcean Engineeringen
dc.relation.ispartofseriesVolume 260en
dc.rightsopenAccessen
dc.subject.keywordBending fractureen_US
dc.subject.keywordFracture mechanismen_US
dc.subject.keywordIce loaden_US
dc.subject.keywordLevel iceen_US
dc.subject.keywordSplitting fractureen_US
dc.titleInvestigation of the fracture mechanism of level ice with extended finite element methoden
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files