Perturbation Theory of Transfer Function Matrices
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Noferini, V | en_US |
dc.contributor.author | Nyman, L | en_US |
dc.contributor.author | Pérez, J. | en_US |
dc.contributor.author | Quintana, M. C. | en_US |
dc.contributor.department | Department of Mathematics and Systems Analysis | en |
dc.contributor.groupauthor | Mathematical Statistics and Data Science | en |
dc.contributor.groupauthor | Algebra and Discrete Mathematics | en |
dc.contributor.groupauthor | Numerical Analysis | en |
dc.contributor.organization | Department of Mathematics and Systems Analysis | en_US |
dc.contributor.organization | University of Montana | en_US |
dc.date.accessioned | 2023-10-25T07:37:15Z | |
dc.date.available | 2023-10-25T07:37:15Z | |
dc.date.issued | 2023 | en_US |
dc.description.abstract | Zeros of rational transfer function matrices R(λ ) are the eigenvalues of associated polynomial system matrices P(λ ) under minimality conditions. In this paper, we define a structured condition number for a simple eigenvalue λ 0 of a (locally) minimal polynomial system matrix P(λ ), which in turn is a simple zero λ 0 of its transfer function matrix R(λ ). Since any rational matrix can be written as the transfer function of a polynomial system matrix, our analysis yields a structured perturbation theory for simple zeros of rational matrices R(λ ). To capture all the zeros of R(λ ), regardless of whether they are poles, we consider the notion of root vectors. As corollaries of the main results, we pay particular attention to the special case of λ 0 being not a pole of R(λ ) since in this case the results get simpler and can be useful in practice. We also compare our structured condition number with Tisseur's unstructured condition number for eigenvalues of matrix polynomials and show that the latter can be unboundedly larger. Finally, we corroborate our analysis by numerical experiments. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 22 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Noferini, V, Nyman, L, Pérez, J & Quintana, M C 2023, ' Perturbation Theory of Transfer Function Matrices ', SIAM Journal on Matrix Analysis and Applications, vol. 44, no. 3, pp. 1299-1320 . https://doi.org/10.1137/22M1509825 | en |
dc.identifier.doi | 10.1137/22M1509825 | en_US |
dc.identifier.issn | 0895-4798 | |
dc.identifier.other | PURE UUID: f64cca4a-0600-466b-b8da-2705eaca1b94 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/f64cca4a-0600-466b-b8da-2705eaca1b94 | en_US |
dc.identifier.other | PURE LINK: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=aalto_pure&SrcAuth=WosAPI&KeyUT=WOS:001072643200010&DestLinkType=FullRecord&DestApp=WOS | |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85174341748&partnerID=8YFLogxK | |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/125269205/Perturbation_Theory_of_Transfer_Function_Matrices.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/124290 | |
dc.identifier.urn | URN:NBN:fi:aalto-202310256663 | |
dc.language.iso | en | en |
dc.publisher | Society for Industrial and Applied Mathematics Publications | |
dc.relation.ispartofseries | SIAM Journal on Matrix Analysis and Applications | en |
dc.relation.ispartofseries | Volume 44, issue 3, pp. 1299-1320 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Condition number | en_US |
dc.subject.keyword | Poles | en_US |
dc.subject.keyword | Polynomial system matrix | en_US |
dc.subject.keyword | Rational eigenvalue problem | en_US |
dc.subject.keyword | Rational matrix | en_US |
dc.subject.keyword | Root vectors | en_US |
dc.subject.keyword | Transfer function matrix | en_US |
dc.subject.keyword | Zeros | en_US |
dc.title | Perturbation Theory of Transfer Function Matrices | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |