Perturbation Theory of Transfer Function Matrices

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNoferini, Ven_US
dc.contributor.authorNyman, Len_US
dc.contributor.authorPérez, J.en_US
dc.contributor.authorQuintana, M. C.en_US
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.groupauthorMathematical Statistics and Data Scienceen
dc.contributor.groupauthorAlgebra and Discrete Mathematicsen
dc.contributor.groupauthorNumerical Analysisen
dc.contributor.organizationDepartment of Mathematics and Systems Analysisen_US
dc.contributor.organizationUniversity of Montanaen_US
dc.date.accessioned2023-10-25T07:37:15Z
dc.date.available2023-10-25T07:37:15Z
dc.date.issued2023en_US
dc.description.abstractZeros of rational transfer function matrices R(λ ) are the eigenvalues of associated polynomial system matrices P(λ ) under minimality conditions. In this paper, we define a structured condition number for a simple eigenvalue λ 0 of a (locally) minimal polynomial system matrix P(λ ), which in turn is a simple zero λ 0 of its transfer function matrix R(λ ). Since any rational matrix can be written as the transfer function of a polynomial system matrix, our analysis yields a structured perturbation theory for simple zeros of rational matrices R(λ ). To capture all the zeros of R(λ ), regardless of whether they are poles, we consider the notion of root vectors. As corollaries of the main results, we pay particular attention to the special case of λ 0 being not a pole of R(λ ) since in this case the results get simpler and can be useful in practice. We also compare our structured condition number with Tisseur's unstructured condition number for eigenvalues of matrix polynomials and show that the latter can be unboundedly larger. Finally, we corroborate our analysis by numerical experiments.en
dc.description.versionPeer revieweden
dc.format.extent22
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNoferini, V, Nyman, L, Pérez, J & Quintana, M C 2023, ' Perturbation Theory of Transfer Function Matrices ', SIAM Journal on Matrix Analysis and Applications, vol. 44, no. 3, pp. 1299-1320 . https://doi.org/10.1137/22M1509825en
dc.identifier.doi10.1137/22M1509825en_US
dc.identifier.issn0895-4798
dc.identifier.otherPURE UUID: f64cca4a-0600-466b-b8da-2705eaca1b94en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f64cca4a-0600-466b-b8da-2705eaca1b94en_US
dc.identifier.otherPURE LINK: https://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=aalto_pure&SrcAuth=WosAPI&KeyUT=WOS:001072643200010&DestLinkType=FullRecord&DestApp=WOS
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85174341748&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/125269205/Perturbation_Theory_of_Transfer_Function_Matrices.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124290
dc.identifier.urnURN:NBN:fi:aalto-202310256663
dc.language.isoenen
dc.publisherSociety for Industrial and Applied Mathematics Publications
dc.relation.ispartofseriesSIAM Journal on Matrix Analysis and Applicationsen
dc.relation.ispartofseriesVolume 44, issue 3, pp. 1299-1320en
dc.rightsopenAccessen
dc.subject.keywordCondition numberen_US
dc.subject.keywordPolesen_US
dc.subject.keywordPolynomial system matrixen_US
dc.subject.keywordRational eigenvalue problemen_US
dc.subject.keywordRational matrixen_US
dc.subject.keywordRoot vectorsen_US
dc.subject.keywordTransfer function matrixen_US
dc.subject.keywordZerosen_US
dc.titlePerturbation Theory of Transfer Function Matricesen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files