Feature-based Vehicle Identification Framework for Optimization of Collective Perception Messages in Vehicular Networks

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorMasuda, Hidetakaen_US
dc.contributor.authorMarai, Oussama Elen_US
dc.contributor.authorTsukada, Manabuen_US
dc.contributor.authorTaleb, Tariken_US
dc.contributor.authorEsaki, Hiroshien_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorMobile Network Softwarization and Service Customizationen
dc.contributor.organizationUniversity of Tokyoen_US
dc.contributor.organizationUniversity of Ouluen_US
dc.date.accessioned2022-12-14T10:18:42Z
dc.date.available2022-12-14T10:18:42Z
dc.date.issued2023-02-01en_US
dc.descriptionPublisher Copyright: Author
dc.description.abstractThe world is moving towards a fully connected digital world, where objects produce and consume data, at a sultry pace. Autonomous vehicles will play a key role in bolstering the digitization of the world. These connected vehicles must communicate timely data with their surrounding objects and road participants to fully and accurately understand their environments and eventually operate smoothly. As a result, the hugely exchanged data would scramble the network traffic that, at a given point, would no longer increase the awareness level of the vehicle. In this paper, we propose a vision-based approach to identify connected vehicles and use it to optimize the exchange of collective perception messages (CPMs), in terms of both the CPM generation frequency and the number of generated CPMs. To validate our proposed approach, we created a <sc>Cartery</sc> framework that integrates SUMO, Carla, and OMNeT++. We also compared our solution with both baselines and European Telecommunications Standards Institute solutions, considering three main KPIs: the channel busy ratio, environmental awareness, and the CPM generation frequency. Simulation results show that our proposed solution exhibits the best trade-off between the network load and situational awareness.en
dc.description.versionPeer revieweden
dc.format.extent11
dc.format.extent1-11
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationMasuda, H, Marai, O E, Tsukada, M, Taleb, T & Esaki, H 2023, ' Feature-based Vehicle Identification Framework for Optimization of Collective Perception Messages in Vehicular Networks ', IEEE Transactions on Vehicular Technology, vol. 72, no. 2, pp. 2120-2129 . https://doi.org/10.1109/TVT.2022.3211852en
dc.identifier.doi10.1109/TVT.2022.3211852en_US
dc.identifier.issn0018-9545
dc.identifier.otherPURE UUID: bfd3fa69-9192-46e2-a836-e8635a708535en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/bfd3fa69-9192-46e2-a836-e8635a708535en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85139837783&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/94595113/Feature_based_Vehicle_Identification_Framework_for_Optimization_of_Collective_Perception_Messages_in_Vehicular_Networks.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/118191
dc.identifier.urnURN:NBN:fi:aalto-202212146931
dc.language.isoenen
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
dc.relation.ispartofseriesIEEE Transactions on Vehicular Technologyen
dc.rightsopenAccessen
dc.subject.keywordCamsen_US
dc.subject.keywordCarlaen_US
dc.subject.keywordCollective perception message optimizationen_US
dc.subject.keywordConnected vehiclesen_US
dc.subject.keywordIntelligent transportation systemen_US
dc.subject.keywordObject recognitionen_US
dc.subject.keywordOMNeT++en_US
dc.subject.keywordRoadsen_US
dc.subject.keywordSimulationen_US
dc.subject.keywordSUMOen_US
dc.subject.keywordVehicle dynamicsen_US
dc.subject.keywordVehicle identificationen_US
dc.subject.keywordVehicle to everything communicationen_US
dc.subject.keywordVehicle-to-everythingen_US
dc.titleFeature-based Vehicle Identification Framework for Optimization of Collective Perception Messages in Vehicular Networksen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionacceptedVersion

Files