Implementing Multi-Task Learning for Bayesian Optimization Structure Search
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.advisor | Todorovic, Milica, Research Fellow, Aalto University, Department of Applied Physics, Finland | |
dc.contributor.advisor | Remes, Ulpu, Postdoctoral Researcher, University of Helsinki, Department of Mathematics and Statistics, Finland | |
dc.contributor.author | Sten, Nuutti Akilles | |
dc.contributor.department | Teknillisen fysiikan laitos | fi |
dc.contributor.department | Department of Applied Physics | en |
dc.contributor.lab | Computational Electronic Structure Theory (CEST) | en |
dc.contributor.lab | CEST-tutkimusryhmä | fi |
dc.contributor.school | Perustieteiden korkeakoulu | fi |
dc.contributor.school | School of Science | en |
dc.contributor.supervisor | Rinke, Patrick, Associate Professor, Aalto University, Department of Applied Physics, Finland | |
dc.date.accessioned | 2020-05-20T09:00:05Z | |
dc.date.available | 2020-05-20T09:00:05Z | |
dc.date.dateaccepted | 2020-04-21 | |
dc.date.issued | 2020 | |
dc.description.abstract | Machine learning algorithms are highly dependent on the quality of the training data. Problems with the data, like accuracy and expenses in gathering it project directly to the cost and performance of the algorithm. Multi-task learning methods try to overcome this problem by combining information from multiple sources of data. In this study I focused on two existing methods for multi-output Gaussian processes, linear model of coregionalisation and intrinsic coregionalisation model. My aim in this study was to implement these algorithms to Bayesian Optimization Structure Search (BOSS) tool and test their potential for accelerating atomistic structure search space navigation with a simulation study. I found potential for reducing computational cost of optimization of expensive structure searches with multi-task learning. | en |
dc.format.extent | 30 + app. 34 | |
dc.format.mimetype | application/pdf | en |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/44208 | |
dc.identifier.urn | URN:NBN:fi:aalto-202005043002 | |
dc.language.iso | en | en |
dc.programme.major | Monimutkaiset Systeemit | fi |
dc.programme.major | Complex Systems | en |
dc.programme.mcode | SCI3060 | |
dc.publisher | Aalto University | en |
dc.publisher | Aalto-yliopisto | fi |
dc.subject.keyword | Bayesian Optimization Structure Search | en |
dc.subject.keyword | Gaussian Processes | en |
dc.subject.keyword | Multi-task Learning | en |
dc.subject.keyword | Coregionalization,Linear Model of Coregionalization | en |
dc.subject.keyword | Electronic Structure Theory | en |
dc.subject.keyword | Machine Learning for Materials Science | en |
dc.subject.keyword | Transfer Learning | en |
dc.subject.keyword | Aineen rakenne | fi |
dc.subject.keyword | Bayesilainen optimointi | fi |
dc.subject.keyword | Monilähteinen koneoppiminen | fi |
dc.subject.keyword | Gaussin prosessi | fi |
dc.subject.keyword | Siirtolähteinen koneoppiminen | fi |
dc.subject.keyword | Laskennallinen materiaalitutkimus | fi |
dc.subject.other | Biotechnology | en |
dc.subject.other | Computer science | en |
dc.subject.other | Materials science | en |
dc.subject.other | Mathematics | en |
dc.title | Implementing Multi-Task Learning for Bayesian Optimization Structure Search | en |
dc.title | Monilähteisen koneoppimisen soveltaminen Bayesilaiseen optimointiin aineen rakenteen laskennallisessa selvittämisessä | fi |
dc.type | S harjoitus- ja seminaarityöt | fi |
dc.type.dcmitype | text | en |
local.aalto.formfolder | 2020_05_04_klo_11_09 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- sem_sten_nuutti akilles_2020.pdf
- Size:
- 2.32 MB
- Format:
- Adobe Portable Document Format