Reversible Electric-Field-Driven Magnetic Domain-Wall Motion

Loading...
Thumbnail Image

Access rights

© 2015 American Physical Society (APS). This is the accepted version of the following article: Franke, Kevin J. A. & Van de Wiele, Ben & Shirahata, Yasuhiro & Hämäläinen, Sampo J. & Taniyama, Tomoyasu & van Dijken, Sebastiaan. 2015. Reversible Electric-Field-Driven Magnetic Domain-Wall Motion. Physical Review X. Volume 5, Issue 1. 011010/1-9. ISSN 2160-3308 (printed). DOI: 10.1103/physrevx.5.011010, which has been published in final form at http://journals.aps.org/prx/abstract/10.1103/PhysRevX.5.011010.

URL

Journal Title

Journal ISSN

Volume Title

School of Science | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2015

Major/Subject

Mcode

Degree programme

Language

en

Pages

011010/1-9

Series

Physical Review X, Volume 5, Issue 1

Abstract

Control of magnetic domain-wall motion by electric fields has recently attracted scientific attention because of its potential for magnetic logic and memory devices. Here, we report on a new driving mechanism that allows for magnetic domain-wall motion in an applied electric field without the concurrent use of a magnetic field or spin-polarized electric current. The mechanism is based on elastic coupling between magnetic and ferroelectric domain walls in multiferroic heterostructures. Pure electric-field-driven magnetic domain-wall motion is demonstrated for epitaxial Fe films on BaTiO3 with in-plane and out-of-plane polarized domains. In this system, magnetic domain-wall motion is fully reversible and the velocity of the walls varies exponentially as a function of out-of-plane electric-field strength.

Description

Keywords

magnetic domain-wall motion, electric fields, elastic coupling

Other note

Citation

Franke, Kevin J. A. & Van de Wiele, Ben & Shirahata, Yasuhiro & Hämäläinen, Sampo J. & Taniyama, Tomoyasu & van Dijken, Sebastiaan. 2015. Reversible Electric-Field-Driven Magnetic Domain-Wall Motion. Physical Review X. Volume 5, Issue 1. 011010/1-9. ISSN 2160-3308 (printed). DOI: 10.1103/physrevx.5.011010