Active Incremental Learning of a Contextual Skill Model

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHazara, Murtazaen_US
dc.contributor.authorLi, Xiaopuen_US
dc.contributor.authorKyrki, Villeen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorIntelligent Roboticsen
dc.contributor.organizationDepartment of Electrical Engineering and Automationen_US
dc.date.accessioned2020-02-12T10:48:32Z
dc.date.available2020-02-12T10:48:32Z
dc.date.issued2019en_US
dc.description.abstractContextual skill models are learned to provide skills over a range of task parameters, often using regression across optimal task-specific policies. However, the sequential nature of the learning process is usually neglected. In this paper, we propose to use active incremental learning by selecting a task which maximizes performance improvement over entire task set. The proposed framework exploits knowledge of individual tasks accumulated in a database and shares it among the tasks using a contextual skill model. The framework is agnostic to the type of policy representation, skill model, and policy search. We evaluated the skill improvement rate in two tasks, ball-in-a-cup and basketball. In both, active selection of tasks lead to a consistent improvement in skill performance over a baseline.en
dc.description.versionPeer revieweden
dc.format.extent6
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHazara, M, Li, X & Kyrki, V 2019, Active Incremental Learning of a Contextual Skill Model. in Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019., 8967837, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 1834-1839, IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 04/11/2019. https://doi.org/10.1109/IROS40897.2019.8967837en
dc.identifier.doi10.1109/IROS40897.2019.8967837en_US
dc.identifier.isbn978-1-7281-4004-9
dc.identifier.issn2153-0858
dc.identifier.issn2153-0866
dc.identifier.otherPURE UUID: 620cbf0f-c149-4f92-818a-6afcaa8eacb7en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/620cbf0f-c149-4f92-818a-6afcaa8eacb7en_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40823128/ELEC_Hazara_etal_Active_Incremental_Learning_IROS2019_authoracceptedmanuscript.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/43080
dc.identifier.urnURN:NBN:fi:aalto-202002122149
dc.language.isoenen
dc.relation.ispartofIEEE/RSJ International Conference on Intelligent Robots and Systemsen
dc.relation.ispartofseriesProceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019en
dc.relation.ispartofseriespp. 1834-1839en
dc.relation.ispartofseriesProceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systemsen
dc.rightsopenAccessen
dc.subject.keywordActive incrementl learningen_US
dc.subject.keywordContextual skill modelen_US
dc.subject.keywordTask parametersen_US
dc.subject.keywordOptima task-specific policiesen_US
dc.subject.keywordLearning processen_US
dc.subject.keywordSkill improvement rateen_US
dc.subject.keywordSkill performanceen_US
dc.subject.keywordPolicy representationen_US
dc.subject.keywordPolicy searchen_US
dc.subject.keywordBall-in-a-cupen_US
dc.subject.keywordBasketballen_US
dc.subject.keywordLearning (artificial intelligence)en_US
dc.titleActive Incremental Learning of a Contextual Skill Modelen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files