Active Incremental Learning of a Contextual Skill Model
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Hazara, Murtaza | en_US |
dc.contributor.author | Li, Xiaopu | en_US |
dc.contributor.author | Kyrki, Ville | en_US |
dc.contributor.department | Department of Electrical Engineering and Automation | en |
dc.contributor.groupauthor | Intelligent Robotics | en |
dc.contributor.organization | Department of Electrical Engineering and Automation | en_US |
dc.date.accessioned | 2020-02-12T10:48:32Z | |
dc.date.available | 2020-02-12T10:48:32Z | |
dc.date.issued | 2019 | en_US |
dc.description.abstract | Contextual skill models are learned to provide skills over a range of task parameters, often using regression across optimal task-specific policies. However, the sequential nature of the learning process is usually neglected. In this paper, we propose to use active incremental learning by selecting a task which maximizes performance improvement over entire task set. The proposed framework exploits knowledge of individual tasks accumulated in a database and shares it among the tasks using a contextual skill model. The framework is agnostic to the type of policy representation, skill model, and policy search. We evaluated the skill improvement rate in two tasks, ball-in-a-cup and basketball. In both, active selection of tasks lead to a consistent improvement in skill performance over a baseline. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 6 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Hazara, M, Li, X & Kyrki, V 2019, Active Incremental Learning of a Contextual Skill Model. in Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019., 8967837, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, pp. 1834-1839, IEEE/RSJ International Conference on Intelligent Robots and Systems, Macau, China, 04/11/2019. https://doi.org/10.1109/IROS40897.2019.8967837 | en |
dc.identifier.doi | 10.1109/IROS40897.2019.8967837 | en_US |
dc.identifier.isbn | 978-1-7281-4004-9 | |
dc.identifier.issn | 2153-0858 | |
dc.identifier.issn | 2153-0866 | |
dc.identifier.other | PURE UUID: 620cbf0f-c149-4f92-818a-6afcaa8eacb7 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/620cbf0f-c149-4f92-818a-6afcaa8eacb7 | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/40823128/ELEC_Hazara_etal_Active_Incremental_Learning_IROS2019_authoracceptedmanuscript.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/43080 | |
dc.identifier.urn | URN:NBN:fi:aalto-202002122149 | |
dc.language.iso | en | en |
dc.relation.ispartof | IEEE/RSJ International Conference on Intelligent Robots and Systems | en |
dc.relation.ispartofseries | Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2019 | en |
dc.relation.ispartofseries | pp. 1834-1839 | en |
dc.relation.ispartofseries | Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems | en |
dc.rights | openAccess | en |
dc.subject.keyword | Active incrementl learning | en_US |
dc.subject.keyword | Contextual skill model | en_US |
dc.subject.keyword | Task parameters | en_US |
dc.subject.keyword | Optima task-specific policies | en_US |
dc.subject.keyword | Learning process | en_US |
dc.subject.keyword | Skill improvement rate | en_US |
dc.subject.keyword | Skill performance | en_US |
dc.subject.keyword | Policy representation | en_US |
dc.subject.keyword | Policy search | en_US |
dc.subject.keyword | Ball-in-a-cup | en_US |
dc.subject.keyword | Basketball | en_US |
dc.subject.keyword | Learning (artificial intelligence) | en_US |
dc.title | Active Incremental Learning of a Contextual Skill Model | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | acceptedVersion |