The network-untangling problem: from interactions to activity timelines
No Thumbnail Available
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2021-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Data Mining and Knowledge Discovery
Abstract
In this paper we study a problem of determining when entities are active based on their interactions with each other. We consider a set of entities V and a sequence of time-stamped edges E among the entities. Each edge (u, v, t) ∈ E denotes an interaction between entities u and v at time t. We assume an activity model where each entity is active during at most k time intervals. An interaction (u, v, t) can be explained if at least one of u or v are active at time t. Our goal is to reconstruct the activity intervals for all entities in the network, so as to explain the observed interactions. This problem, the network-untangling problem, can be applied to discover event timelines from complex entity interactions. We provide two formulations of the network-untangling problem: (i) minimizing the total interval length over all entities (sum version), and (ii) minimizing the maximum interval length (max version). We study separately the two problems for k= 1 and k> 1 activity intervals per entity. For the case k= 1 , we show that the sum problem is NP-hard, while the max problem can be solved optimally in linear time. For the sum problem we provide efficient algorithms motivated by realistic assumptions. For the case of k> 1 , we show that both formulations are inapproximable. However, we propose efficient algorithms based on alternative optimization. We complement our study with an evaluation on synthetic and real-world datasets, which demonstrates the validity of our concepts and the good performance of our algorithms.Description
| openaire: EC/H2020/654024/EU//SoBigData
Keywords
2-sat, Complex networks, Linear programming, Temporal networks, Timeline reconstruction, Vertex cover
Other note
Citation
Rozenshtein, P, Tatti, N & Gionis, A 2021, ' The network-untangling problem : from interactions to activity timelines ', Data Mining and Knowledge Discovery, vol. 35, no. 1, pp. 213-247 . https://doi.org/10.1007/s10618-020-00717-5