Photon-counting computed tomography thermometry via material decomposition and machine learning
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Wang, Nathan | en_US |
dc.contributor.author | Li, Mengzhou | en_US |
dc.contributor.author | Haverinen, Petteri | en_US |
dc.contributor.department | Design Factory | en |
dc.contributor.organization | Johns Hopkins University | en_US |
dc.contributor.organization | Rensselaer Polytechnic Institute | en_US |
dc.contributor.organization | Design Factory | en_US |
dc.date.accessioned | 2023-04-26T08:39:04Z | |
dc.date.available | 2023-04-26T08:39:04Z | |
dc.date.issued | 2023-12 | en_US |
dc.description | Funding Information: This work is supported by the Johns Hopkins University Leong Research Award for Undergraduates. Publisher Copyright: © 2023, The Author(s). | |
dc.description.abstract | Thermal ablation procedures, such as high intensity focused ultrasound and radiofrequency ablation, are often used to eliminate tumors by minimally invasively heating a focal region. For this task, real-time 3D temperature visualization is key to target the diseased tissues while minimizing damage to the surroundings. Current computed tomography (CT) thermometry is based on energy-integrated CT, tissue-specific experimental data, and linear relationships between attenuation and temperature. In this paper, we develop a novel approach using photon-counting CT for material decomposition and a neural network to predict temperature based on thermal characteristics of base materials and spectral tomographic measurements of a volume of interest. In our feasibility study, distilled water, 50 mmol/L CaCl2, and 600 mmol/L CaCl2 are chosen as the base materials. Their attenuations are measured in four discrete energy bins at various temperatures. The neural network trained on the experimental data achieves a mean absolute error of 3.97 °C and 1.80 °C on 300 mmol/L CaCl2 and a milk-based protein shake respectively. These experimental results indicate that our approach is promising for handling non-linear thermal properties for materials that are similar or dissimilar to our base materials. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 6 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Wang, N, Li, M & Haverinen, P 2023, ' Photon-counting computed tomography thermometry via material decomposition and machine learning ', Visual Computing for Industry, Biomedicine, and Art, vol. 6, no. 1, 2 . https://doi.org/10.1186/s42492-022-00129-w | en |
dc.identifier.doi | 10.1186/s42492-022-00129-w | en_US |
dc.identifier.issn | 2096-496X | |
dc.identifier.issn | 2524-4442 | |
dc.identifier.other | PURE UUID: 33f447b9-37b0-4222-8c1b-e282b7a37e53 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/33f447b9-37b0-4222-8c1b-e282b7a37e53 | en_US |
dc.identifier.other | PURE LINK: http://www.scopus.com/inward/record.url?scp=85146299375&partnerID=8YFLogxK | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/106792949/s42492_022_00129_w.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/120515 | |
dc.identifier.urn | URN:NBN:fi:aalto-202304262837 | |
dc.language.iso | en | en |
dc.publisher | SPRINGER | |
dc.relation.ispartofseries | Visual Computing for Industry, Biomedicine, and Art | en |
dc.relation.ispartofseries | Volume 6, issue 1 | en |
dc.rights | openAccess | en |
dc.subject.keyword | Artificial intelligence | en_US |
dc.subject.keyword | Computed tomography thermometry | en_US |
dc.subject.keyword | Deep learning | en_US |
dc.subject.keyword | Material decomposition | en_US |
dc.subject.keyword | Neural network | en_US |
dc.subject.keyword | Photon-counting computed tomography | en_US |
dc.subject.keyword | Radiotherapy | en_US |
dc.subject.keyword | Thermotherapy | en_US |
dc.title | Photon-counting computed tomography thermometry via material decomposition and machine learning | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |