Determination of the responsivity of a predictable quantum efficient detector over a wide spectral range based on a 3D model of charge carrier recombination losses
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2022-08-01
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
11
1-11
1-11
Series
Metrologia, Volume 59, issue 4
Abstract
We present a method to determine the internal quantum deficiency (IQD) of a predictable quantum efficient detector (PQED) based on measured photocurrent dependence on bias voltage and a 3D simulation model of charge carrier recombination losses. The simulation model of silicon photodiodes includes wafer doping concentration, fixed charge of SiO2 layer, bulk lifetime of charge carriers and surface recombination velocity as the fitted parameters. With only one set of physical photodiode defining parameters, the simulation shows excellent agreement with experimental data at power levels from 100 μW to 1000 μW with variation in illumination beam size. We could also predict the dependence of IQD on bias voltage at the wavelength of 476 nm using photodiode parameters determined independently at 647 nm wavelength. The fitted values of doping concentration and fixed charge extracted from the simulation model are in close agreement with the expected parameter values determined earlier. At bias voltages larger than 5 V at the wavelength of 476 nm, the internal quantum efficiency of one of the tested PQEDs is measured to be 0.999 970 ± 0.000 027, where the relative expanded uncertainty of 0.000 027 is one of the lowest values ever achieved in spectral responsivity measurement of optical detectors.Description
Funding Information: This project (18SIB10 chipS.CALe) has received funding from the EMPIR programme co-financed by the Participating States and from the European Union’s Horizon 2020 research and innovation programme. Authors of Aalto University acknowledge the support by the Academy of Finland Flagship Programme, Photonics Research and Innovation (PREIN), decision number: 320167. Publisher Copyright: © 2022 BIPM & IOP Publishing Ltd.
Keywords
internal quantum deficiency, photodetector, predictable quantum efficient detector, simulation
Other note
Citation
Tran, T, Porrovecchio, G, Smid, M, Ikonen, E, Dönsberg, T & Gran, J 2022, ' Determination of the responsivity of a predictable quantum efficient detector over a wide spectral range based on a 3D model of charge carrier recombination losses ', Metrologia, vol. 59, no. 4, 045012, pp. 1-11 . https://doi.org/10.1088/1681-7575/ac604b