Oscillating Gaussian processes

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

23

Series

Statistical Inference for Stochastic Processes, Volume 23, issue 3, pp. 571-593

Abstract

In this article we introduce and study oscillating Gaussian processes defined by Xt=α+Yt1Yt>0+α-Yt1Yt<0, where α+, α-> 0 are free parameters and Y is either stationary or self-similar Gaussian process. We study the basic properties of X and we consider estimation of the model parameters. In particular, we show that the moment estimators converge in Lp and are, when suitably normalised, asymptotically normal.

Description

Other note

Citation

Ilmonen, P, Torres, S & Viitasaari, L 2020, 'Oscillating Gaussian processes', Statistical Inference for Stochastic Processes, vol. 23, no. 3, pp. 571-593. https://doi.org/10.1007/s11203-020-09212-6