A medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNajafi, Arsalanen_US
dc.contributor.authorPourakbari-Kasmaei, Mahdien_US
dc.contributor.authorJasinski, Michalen_US
dc.contributor.authorLehtonen, Mattien_US
dc.contributor.authorLeonowicz, Zbigniewen_US
dc.contributor.departmentDepartment of Electrical Engineering and Automationen
dc.contributor.groupauthorPower and Energy Systemsen
dc.contributor.groupauthorPower Systems and High Voltage Engineeringen
dc.contributor.organizationWroclaw University of Science and Technologyen_US
dc.date.accessioned2021-08-25T06:53:17Z
dc.date.available2021-08-25T06:53:17Z
dc.date.issued2022-01-01en_US
dc.descriptionFunding Information: Arsalan Najafi would like to acknowledge the support by Polish National Agency for Academic Exchange for the grant No. PPN/ULM/2020/1/00196 . Publisher Copyright: © 2021 The Author(s)
dc.description.abstractIntroducing new technologies in co-generation and tri-generation systems has led to a rapid growth toward the energy hubs (EHs) as an effective way for coupling among various energy types. On the other hand, the energy systems have usually been exposed to uncertain environments due to the presence of renewable energy sources (RESs) and interaction with the electricity markets. Hence, this paper develops a novel optimization framework based on a hybrid information gap decision theory (IGDT) and robust optimization (RO) to handle the optimal self-scheduling of the EH within a medium-term horizon for large consumers. The proposed mixed-integer linear programming (MILP) framework aims to capture the advantages of both the IGDT and RO techniques in dealing with the complicated binary variables and achieving the worst-case realization arisen from wind turbine generation and day-ahead (DA) electricity market uncertainties. The RO optimization approach is presented to model the DA electricity price uncertainty while the uncertainty related to the wind turbine generations is taken into account by the IGDT. Numerical results validate the capability of the model facing uncertainties. The amount of total operation cost of the EH increases by 8.6 % taking into account the worst-case realization of uncertainties through the proposed hybrid IGDT-RO compared to the case considering perfect information. Besides, the results reveal that optimal decisions can be taken by the operator using the proposed hybrid IGDT-RO model.en
dc.description.versionPeer revieweden
dc.format.extent15
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationNajafi, A, Pourakbari-Kasmaei, M, Jasinski, M, Lehtonen, M & Leonowicz, Z 2022, 'A medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systems', Energy, vol. 238, 121661. https://doi.org/10.1016/j.energy.2021.121661en
dc.identifier.doi10.1016/j.energy.2021.121661en_US
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.otherPURE UUID: a36e11c1-bdd5-4055-b4ee-a883c2ac4380en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/a36e11c1-bdd5-4055-b4ee-a883c2ac4380en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85111966849&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/66586651/ELEC_Najafi_etal_A_medium_term_hybrid_IGDT_Robust_optimization_model_Energy_2021_finalpublishedversion.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/109161
dc.identifier.urnURN:NBN:fi:aalto-202108258398
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesEnergyen
dc.relation.ispartofseriesVolume 238en
dc.rightsopenAccessen
dc.subject.keywordEnergy huben_US
dc.subject.keywordInformation gap decision theoryen_US
dc.subject.keywordPower to gas technologyen_US
dc.subject.keywordRobust optimizationen_US
dc.titleA medium-term hybrid IGDT-Robust optimization model for optimal self scheduling of multi-carrier energy systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files