Planetary magnetic field control of ion escape from weakly magnetized planets

Loading...
Thumbnail Image

Access rights

openAccess

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2019-09

Major/Subject

Mcode

Degree programme

Language

en

Pages

2108-2120

Series

Monthly Notices of the Royal Astronomical Society, Volume 488, issue 2

Abstract

Intrinsic magnetic fields have long been thought to shield planets from atmospheric erosion via stellar winds; however, the influence of the plasma environment on atmospheric escape is complex. Here we study the influence of a weak intrinsic dipolar planetary magnetic field on the plasma environment and subsequent ion escape from a Mars-sized planet in a global three-dimensional hybrid simulation. We find that increasing the strength of a planet’s magnetic field enhances ion escape until the magnetic dipole’s standoff distance reaches the induced magnetosphere boundary. After this point increasing the planetary magnetic field begins to inhibit ion escape. This reflects a balance between shielding of the Southern hemisphere from ‘misaligned’ ion pickup forces and trapping of escaping ions by an equatorial plasmasphere. Thus, the planetary magnetic field associated with the peak ion escape rate is critically dependent on the stellar wind pressure. Where possible we have fit power laws for the variation of fundamental parameters (escape rate, escape power, polar cap opening angle, and effective interaction area) with magnetic field, and assessed upper and lower limits for the relationships.

Description

Keywords

plasmas, methods: numerical, planets and satellites: atmospheres, planets and satellites: magnetic fields

Other note

Citation

Egan, H, Järvinen, R, Ma, Y & Brain, D A 2019, ' Planetary magnetic field control of ion escape from weakly magnetized planets ', Monthly Notices of the Royal Astronomical Society, vol. 488, no. 2, pp. 2108-2120 . https://doi.org/10.1093/mnras/stz1819