Prediction of glucose tolerance without an oral glucose tolerance test

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBabbar, Rohiten_US
dc.contributor.authorHeni, Martinen_US
dc.contributor.authorPeter, Andreasen_US
dc.contributor.authorde Angelis, Martin Hraběen_US
dc.contributor.authorHäring, Hans Ulrichen_US
dc.contributor.authorFritsche, Andreasen_US
dc.contributor.authorPreissl, Huberten_US
dc.contributor.authorSchölkopf, Bernharden_US
dc.contributor.authorWagner, Róberten_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.groupauthorProfessorship Babbar Rohiten
dc.contributor.organizationUniversity of Tübingenen_US
dc.contributor.organizationGerman Center for Diabetes Researchen_US
dc.contributor.organizationMax Planck Institute for Intelligent Systemsen_US
dc.date.accessioned2018-10-02T11:31:40Z
dc.date.available2018-10-02T11:31:40Z
dc.date.issued2018-03-19en_US
dc.description.abstractIntroduction: Impaired glucose tolerance (IGT) is diagnosed by a standardized oral glucose tolerance test (OGTT). However, the OGTT is laborious, and when not performed, glucose tolerance cannot be determined from fasting samples retrospectively. We tested if glucose tolerance status is reasonably predictable from a combination of demographic, anthropometric, and laboratory data assessed at one time point in a fasting state. Methods: Given a set of 22 variables selected upon clinical feasibility such as sex, age, height, weight, waist circumference, blood pressure, fasting glucose, HbA1c, hemoglobin, mean corpuscular volume, serum potassium, fasting levels of insulin, C-peptide, triglyceride, non-esterified fatty acids (NEFA), proinsulin, prolactin, cholesterol, low-density lipoprotein, HDL, uric acid, liver transaminases, and ferritin, we used supervised machine learning to estimate glucose tolerance status in 2,337 participants of the TUEF study who were recruited before 2012. We tested the performance of 10 different machine learning classifiers on data from 929 participants in the test set who were recruited after 2012. In addition, reproducibility of IGT was analyzed in 78 participants who had 2 repeated OGTTs within 1 year. Results: The most accurate prediction of IGT was reached with the recursive partitioning method (accuracy = 0.78). For all classifiers, mean accuracy was 0.73 ± 0.04. The most important model variable was fasting glucose in all models. Using mean variable importance across all models, fasting glucose was followed by NEFA, triglycerides, HbA1c, and C-peptide. The accuracy of predicting IGT from a previous OGTT was 0.77. Conclusion: Machine learning methods yield moderate accuracy in predicting glucose tolerance from a wide set of clinical and laboratory variables. A substitution of OGTT does not currently seem to be feasible. An important constraint could be the limited reproducibility of glucose tolerance status during a subsequent OGTT.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBabbar, R, Heni, M, Peter, A, de Angelis, M H, Häring, H U, Fritsche, A, Preissl, H, Schölkopf, B & Wagner, R 2018, ' Prediction of glucose tolerance without an oral glucose tolerance test ', Frontiers in Endocrinology, vol. 9, no. MAR, 82 . https://doi.org/10.3389/fendo.2018.00082en
dc.identifier.doi10.3389/fendo.2018.00082en_US
dc.identifier.issn1664-2392
dc.identifier.otherPURE UUID: afae4ccd-c8ac-4bdd-8a91-40ec27bd1ddden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/afae4ccd-c8ac-4bdd-8a91-40ec27bd1ddden_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85044422034&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/28055557/fendo_09_00082.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/34132
dc.identifier.urnURN:NBN:fi:aalto-201810025215
dc.language.isoenen
dc.publisherFrontiers Media
dc.relation.ispartofseriesFrontiers in Endocrinologyen
dc.relation.ispartofseriesVolume 9, issue MARen
dc.rightsopenAccessen
dc.subject.keywordClassificationen_US
dc.subject.keywordClinical studyen_US
dc.subject.keywordImpaired glucose toleranceen_US
dc.subject.keywordMachine learning classificationen_US
dc.subject.keywordOral glucose tolerance testen_US
dc.subject.keywordPredictionen_US
dc.subject.keywordSupervised machine learningen_US
dc.subject.keywordTest-retest variabilityen_US
dc.titlePrediction of glucose tolerance without an oral glucose tolerance testen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files