Molecular dynamics simulations of heat transport using machine-learned potentials : A mini-review and tutorial on GPUMD with neuroevolution potentials

Loading...
Thumbnail Image
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Date
2024-04-28
Major/Subject
Mcode
Degree programme
Language
en
Pages
23
Series
Journal of Applied Physics, Volume 135, issue 16, pp. 1-23
Abstract
Molecular dynamics (MD) simulations play an important role in understanding and engineering heat transport properties of complex materials. An essential requirement for reliably predicting heat transport properties is the use of accurate and efficient interatomic potentials. Recently, machine-learned potentials (MLPs) have shown great promise in providing the required accuracy for a broad range of materials. In this mini-review and tutorial, we delve into the fundamentals of heat transport, explore pertinent MD simulation methods, and survey the applications of MLPs in MD simulations of heat transport. Furthermore, we provide a step-by-step tutorial on developing MLPs for highly efficient and predictive heat transport simulations, utilizing the neuroevolution potentials as implemented in the GPUMD package. Our aim with this mini-review and tutorial is to empower researchers with valuable insights into cutting-edge methodologies that can significantly enhance the accuracy and efficiency of MD simulations for heat transport studies.
Description
Publisher Copyright: © 2024 Author(s).
Keywords
Other note
Citation
Dong, H, Shi, Y, Ying, P, Xu, K, Liang, T, Wang, Y, Zeng, Z, Wu, X, Zhou, W, Xiong, S, Chen, S & Fan, Z 2024, ' Molecular dynamics simulations of heat transport using machine-learned potentials : A mini-review and tutorial on GPUMD with neuroevolution potentials ', Journal of Applied Physics, vol. 135, no. 16, 161101, pp. 1-23 . https://doi.org/10.1063/5.0200833