Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots
No Thumbnail Available
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2021-07
Major/Subject
Mcode
Degree programme
Language
en
Pages
7
Series
Nature Photonics
Abstract
Colloidal quantum dots are promising photoactive materials that enable plentiful photonic and optoelectronic applications ranging from lasers, displays and photodetectors to solar cells1–9. However, these applications mainly utilize the linear optical properties of quantum dots, and their great potential in the broad nonlinear optical regime is still waiting for full exploration10–12. Here, we demonstrate that a simple coating of a sub-200-nm-thick quantum dot film on two-dimensional materials can significantly enhance their nonlinear optical responses (second, third and fourth harmonic generation) by more than three orders of magnitude. Systematic experimental results indicate that this enhancement is driven by a non-trivial mechanism of multiphoton-excitation resonance energy transfer, where the quantum dots directly deliver their strongly absorbed multiphoton energy to the adjacent two-dimensional materials by a remote dipole–dipole coupling. Our findings could expand the applications of quantum dots in many exciting areas beyond linear optics, such as nonlinear optical signal processing, multiphoton imaging and ultracompact nonlinear optical elements.Description
Funding Information: This work was supported by the National Natural Science Foundation of China (52025023, 51991342, 52021006, 51722204, 51972041, 51972042, 51672007, 11974023, 12025407 and 11934003), the National Key R&D Program of China (2016YFA0300903 and 2016YFA0300804), Beijing Natural Science Foundation (JQ19004), Beijing Excellent Talents Training Support (2017000026833ZK11), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB33000000), Beijing Municipal Science & Technology Commission (Z191100007219005), Beijing Graphene Innovation Program (Z181100004818003), Key-Area Research and Development Program of GuangDong Province (2020B010189001, 2019B010931001 and 2018B030327001), the Science, Technology and Innovation Commission of Shenzhen Municipality (KYTDPT20181011104202253), Bureau of Industry and Information Technology of Shenzhen (Graphene platform 201901161512), The Pearl River Talent Recruitment Program of Guangdong Province (2019ZT08C321), National Equipment Program of China (ZDYZ2015-1) and the China Postdoctoral Science Foundation (2020M680177). Publisher Copyright: © 2021, The Author(s), under exclusive licence to Springer Nature Limited. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.
Keywords
Other note
Citation
Hong, H, Wu, C, Zhao, Z, Zuo, Y, Wang, J, Liu, C, Zhang, J, Wang, F, Feng, J, Shen, H, Yin, J, Wu, Y, Zhao, Y, Liu, K, Gao, P, Meng, S, Wu, S, Sun, Z, Liu, K & Xiong, J 2021, ' Giant enhancement of optical nonlinearity in two-dimensional materials by multiphoton-excitation resonance energy transfer from quantum dots ', Nature Photonics, vol. 15, no. 7, pp. 510-515 . https://doi.org/10.1038/s41566-021-00801-2