Global gridded population datasets systematically underrepresent rural population
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2025-12
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
Nature Communications, Volume 16, issue 1
Abstract
Numerous initiatives towards sustainable development rely on global gridded population data. Such data have been calibrated primarily for urban environments, but their accuracy in the rural domain remains largely unexplored. This study systematically validates global gridded population datasets in rural areas, based on reported human resettlement from 307 large dam construction projects in 35 countries. We find large discrepancies between the examined datasets, and, without exception, significant negative biases of −53%, −65%, −67%, −68%, and −84% for WorldPop, GWP, GRUMP, LandScan, and GHS-POP, respectively. This implies that rural population is, even in the most accurate dataset, underestimated by half compared to reported figures. To ensure equitable access to services and resources for rural communities, past and future applications of the datasets must undergo a critical discussion in light of the identified biases. Improvements in the datasets’ accuracies in rural areas can be attained through strengthened population censuses, alternative population counts, and a more balanced calibration of population models.Description
Publisher Copyright: © The Author(s) 2025.
Keywords
Other note
Citation
Láng-Ritter, J, Keskinen, M & Tenkanen, H 2025, ' Global gridded population datasets systematically underrepresent rural population ', Nature Communications, vol. 16, no. 1, 2170 . https://doi.org/10.1038/s41467-025-56906-7