Algebraic Statistics

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorEngström, Alexander, Prof., Aalto University, Finland
dc.contributor.authorNorén, Patrik
dc.contributor.departmentMatematiikan ja systeemianalyysin laitosfi
dc.contributor.departmentDepartment of Mathematics and Systems Analysisen
dc.contributor.schoolPerustieteiden korkeakoulufi
dc.contributor.schoolSchool of Scienceen
dc.contributor.supervisorEngström, Alexander, Prof., Aalto University, Finland
dc.date.accessioned2013-04-09T09:00:07Z
dc.date.available2013-04-09T09:00:07Z
dc.date.defence2013-04-15
dc.date.issued2013
dc.description.abstractThis thesis on algebraic statistics contains five papers. In paper I we define ideals of graph homomorphisms. These ideals generalize many of the toric ideals defined in terms of graphs that are important in algebraic statistics and commutative algebra.   In paper II we study polytopes from subgraph statistics. Polytopes from subgraph statistics are important for statistical models for large graphs and many problems in extremal graph theory can be stated in terms of them. We find easily described semi-algebraic sets that are contained in these polytopes, and using them we compute dimensions and get volume bounds for the polytopes.  In paper III we study the topological Tverberg theorem and its generalizations. We develop a toolbox for complexes from graphs using vertex decomposability to bound the connectivity.  In paper IV we prove a conjecture by Haws, Martin del Campo, Takemura and Yoshida. It states that the three-state toric homogenous Markov chain model has Markov degree two. In algebraic terminology this means that a certain class of toric ideals are generated by quadratic binomials.  In paper V we produce cellular resolutions for a large class of edge ideals and their powers. Using algebraic discrete Morse theory it is then possible to make many of these resolutions minimal, for example explicit minimal resolutions for powers of edge ideals of paths are constructed this way.en
dc.description.abstractDenna avhandling om algebraisk statistik innehåller fem artiklar. I artikel I definieras ideal av grafhomomorfier. Dessa ideal generaliserar ett flertal konstruktioner av ideal från grafer som är viktiga i algebraisk statistik samt kommutativ algebra. I artikel II behandlas polytoper från delgrafsstatistik. Dessa är viktiga för att förstå statistiska modeller som beskriver stora grafer och många problem om ytterlighetsgrafer kan formuleras med dem. Bland verktygen som används är att beskriva semi-algebraiska mängder i polytoperna och genom detta bestämma deras dimension samt begränsa volymen. I artikel III behandlas den topologiska tverbergssatsen med generaliseringar. Grafkomplexen förstås genom att begränsa sammanhängandegraden medelst hörnnedbrytbarhet. I artikel IV bevisas att ideal tillhörande markovkedjor med tre tillstånd är genererade i grad två, vilket förmodats av Haws, Martin del Campo, Takemura och Yoshida. I artikel V skapas cellulära upplösningar för en stor klass av kantideal samt deras potenser. Med algebraisk diskret morseteori görs dessa upplösningar minimala för kantideal från stigar. sv
dc.format.extent34 + app. 106
dc.format.mimetypeapplication/pdf
dc.identifier.isbn978-952-60-5048-5 (electronic)
dc.identifier.isbn978-952-60-5047-8 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/8974
dc.identifier.urnURN:ISBN:978-952-60-5048-5
dc.language.isoenen
dc.opnWelker, Volkmar, Prof., Philipps-Universität Marburg, Germany
dc.opnHultman, Axel, Dr., Linköpings universitet, Sweden
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Alexander Engstrom and Patrik Noren. Ideals of graph homomorphisms. Annals of Combinatorics, 17, 2013.
dc.relation.haspart[Publication 2]: Alexander Engstrom and Patrik Noren. Polytopes from subgraph statistics. arxiv:1011.3552, 2010.
dc.relation.haspart[Publication 3]: Alexander Engstrom and Patrik Noren. Tverberg’s theorem and graph coloring. arxiv:1105.1455, 2011.
dc.relation.haspart[Publication 4]: Patrik Noren. The three-state torics homogenous Markov chain model has Markov degree two. arxiv:1207.0077, 2012.
dc.relation.haspart[Publication 5]: Alexander Engstrom and Patrik Noren. Cellular resolutions of powers of monomial ideals. arxiv:1212.2146, 2012.
dc.relation.ispartofseriesAalto University publication series DOCTORAL DISSERTATIONSen
dc.relation.ispartofseries38/2013
dc.revWelker, Volkmar, Prof., Philipps-Universität Marburg, Germany
dc.revSchultz, Carsten, Dr., Freie Universität Berlin, Germany
dc.subject.keywordalgebraen
dc.subject.keywordstatisticsen
dc.subject.otherMathematicsen
dc.titleAlgebraic Statisticsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.digiauthask
local.aalto.digifolderAalto_64779
Files
Original bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
isbn9789526050485.pdf
Size:
193.52 KB
Format:
Adobe Portable Document Format