Numerical solution and structural analysis of differential-algebraic equations

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorArponen, Teijo
dc.contributor.departmentDepartment of Engineering Physics and Mathematicsen
dc.contributor.departmentTeknillisen fysiikan ja matematiikan osastofi
dc.contributor.labInstitute of Mathematicsen
dc.contributor.labMatematiikan laitosfi
dc.date.accessioned2012-02-10T09:22:35Z
dc.date.available2012-02-10T09:22:35Z
dc.date.issued2002-06-18
dc.description.abstractIn the last two decades differential-algebraic equations (DAEs) have become an important branch in numerical analysis. In this Thesis we study them from a new, geometric point of view. The DAE is interpreted as a subset of a jet bundle and its solution are induced by the Cartan distribution on the jet bundle. We also introduce a method to examine and define the structure of a general, polynomial, DAE whose locus is not necessarily a fibred manifold. Also it is shown how some singularities of multibody systems are removed by using the algebraic techniques used in this approach.en
dc.description.versionrevieweden
dc.format.extent22, [111]
dc.format.mimetypeapplication/pdf
dc.identifier.isbn951-22-5909-5
dc.identifier.issn0784-3143
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/2185
dc.identifier.urnurn:nbn:fi:tkk-001557
dc.language.isoenen
dc.publisherHelsinki University of Technologyen
dc.publisherTeknillinen korkeakoulufi
dc.relation.haspartJ. Tuomela and T. Arponen. On the numerical solution of involutive ordinary differential systems. IMA J. Numer. Anal., 20:561-599, 2000.
dc.relation.haspartJ. Tuomela and T. Arponen. On the numerical solution of involutive ordinary differential systems: higher order methods. BIT, 41:599-628, 2001. [article2.pdf] © 2001 BIT. By permission.
dc.relation.haspartT. Arponen. Regularization of constraint singularities in multibody systems. Multibody Systems Dynamics, 6:355-375, 2001.
dc.relation.haspartT. Arponen. The complete form of a differential algebraic equation. Revised version of Technical Report A438, Helsinki University of Technology, 2001. Submitted. [article4.pdf] © 2001 by author.
dc.relation.ispartofseriesResearch reports / Helsinki University of Technology, Institute of Mathematics. Aen
dc.relation.ispartofseries409en
dc.subject.keywordsymbolic computationen
dc.subject.keywordRunge-Kutta methodsen
dc.subject.keywordindex reductionen
dc.subject.keywordoverdetermined differential equationsen
dc.subject.otherMathematicsen
dc.titleNumerical solution and structural analysis of differential-algebraic equationsen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotVäitöskirja (artikkeli)fi
dc.type.ontasotDoctoral dissertation (article-based)en
local.aalto.digiauthask
local.aalto.digifolderAalto_63594

Files

Original bundle

Now showing 1 - 3 of 3
No Thumbnail Available
Name:
isbn9512259095.pdf
Size:
284.18 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article2.pdf
Size:
319.69 KB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
article4.pdf
Size:
330.47 KB
Format:
Adobe Portable Document Format