Fracture of three-dimensional fuse networks with quenched disorder
Loading...
Access rights
© 1998 American Physical Society (APS). This is the accepted version of the following article: Räisänen, V. I. & Alava, M. J. & Nieminen, Risto M. 1998. Fracture of three-dimensional fuse networks with quenched disorder. Physical Review B. Volume 58, Issue 21. 14288-14295. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.58.14288, which has been published in final form at http://journals.aps.org/prb/abstract/10.1103/PhysRevB.58.14288.
Journal Title
Journal ISSN
Volume Title
School of Science |
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
1998
Major/Subject
Mcode
Degree programme
Language
en
Pages
14288-14295
Series
Physical Review B, Volume 58, Issue 21
Abstract
We study a fracture on a quasistatic time scale in a three-dimensional (3D) fuse network model with “strong” and “weak” disorder. These two cases differ noticeably in the development of the fracture. For strong disorder the damage scaling is very close to volumelike [number of broken bonds Nb∼L3/(lnL)0.3] unlike for weak disorder [Nb∼L2.4/(lnL)0.3]. With strong disorder global load sharing is only approximately valid. The size distribution of “avalanches” of broken fuses in the failure follows roughly a power-law scaling. The power-law exponent τ has a value close to 2, close to but differing from the exponent −5/2 expected of global load sharing. For weak disorder τ is about 1.5 which means that the decay of the size distribution is much slower than expected. These exponent values that characterize the development of damage prior to catastrophic failure are comparable to experimental ones. For the final fracture surfaces we observe a roughness exponent ζ≈0.4 for weak disorder. For strong disorder, severe finite size effects are seen, but the exponent seems to converge to the same value as for weak disorder, which is close to the one for the 3D random bond Ising domain wall universality class.Description
Keywords
3D fuse network model, fractures
Other note
Citation
Räisänen, V. I. & Alava, M. J. & Nieminen, Risto M. 1998. Fracture of three-dimensional fuse networks with quenched disorder. Physical Review B. Volume 58, Issue 21. 14288-14295. ISSN 1550-235X (electronic). DOI: 10.1103/physrevb.58.14288.