Symmetry in the open-system dynamics of quantum correlations

Loading...
Thumbnail Image

Access rights

openAccess
CC BY
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Date

2017-08-21

Major/Subject

Mcode

Degree programme

Language

en

Pages

12

Series

Scientific Reports, Volume 7

Abstract

We study the symmetry properties in the dynamics of quantum correlations for two-qubit systems in one-sided noisy channels, with respect to a switch in the location of noise from one qubit to the other. We consider four different channel types, namely depolarizing, amplitude damping, bit-flip, and bit-phase-flip channel, and identify the classes of initial states leading to symmetric decay of entanglement, non-locality and discord. Our results show that the symmetric decay of quantum correlations is not directly linked to the presence or absence of symmetry in the initial state, while it does depend on the type of correlation considered as well as on the type of noise. We prove that asymmetric decay can be used to infer, in certain cases, characteristic properties of the channel. We also show that the location of noise may lead to dramatic changes in the persistence of phenomena such as entanglement sudden death and time-invariant discord.

Description

Keywords

BELL INEQUALITY, ENTANGLEMENT, STATES, DECOHERENCE, EVOLUTION

Other note

Citation

Lyyra, H, Karpat, G, Li, C-F, Guo, G-C, Piilo, J & Maniscalco, S 2017, 'Symmetry in the open-system dynamics of quantum correlations', Scientific Reports, vol. 7, 8367. https://doi.org/10.1038/s41598-017-08457-1