Willow bark for sustainable energy storage systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorHobisch, Mathias Andreasen_US
dc.contributor.authorPhiri, Josphaten_US
dc.contributor.authorDou, Jinzeen_US
dc.contributor.authorGane, Patricken_US
dc.contributor.authorVuorinen, Tapanien_US
dc.contributor.authorBauer, Wolfgangen_US
dc.contributor.authorPrehal, Christianen_US
dc.contributor.authorMaloney, Thaddeusen_US
dc.contributor.authorSpirk, Stefanen_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorBio-based Materialsen
dc.contributor.groupauthorWood Chemistryen
dc.contributor.groupauthorPrinting Technologyen
dc.contributor.organizationGraz University of Technologyen_US
dc.date.accessioned2020-06-01T06:55:55Z
dc.date.available2020-06-01T06:55:55Z
dc.date.issued2020-02-01en_US
dc.description.abstractWillow bark is a byproduct from forestry and is obtained at an industrial scale. We upcycled this byproduct in a two-step procedure into sustainable electrode materials for symmetrical supercapacitors using organic electrolytes. The procedure employed precarbonization followed by carbonization using different types of KOH activation protocols. The obtained electrode materials had a hierarchically organized pore structure and featured a high specific surface area (>2500 m2 g-1) and pore volume (up to 1.48 cm3 g-1). The assembled supercapacitors exhibited capacitances up to 147 F g-1 in organic electrolytes concomitant with excellent cycling performance over 10,000 cycles at 0.6 A g-1 using coin cells. The best materials exhibited a capacity retention of 75% when changing scan rates from 2 to 100 mV s-1.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationHobisch, M A, Phiri, J, Dou, J, Gane, P, Vuorinen, T, Bauer, W, Prehal, C, Maloney, T & Spirk, S 2020, ' Willow bark for sustainable energy storage systems ', Materials, vol. 13, no. 4, 1016 . https://doi.org/10.3390/ma13041016en
dc.identifier.doi10.3390/ma13041016en_US
dc.identifier.issn1996-1944
dc.identifier.otherPURE UUID: ddb799a8-d914-4f93-820f-8b63fa6cc0afen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/ddb799a8-d914-4f93-820f-8b63fa6cc0afen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85081922198&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/43036011/CHEM_Hobisch_et_al_2020_Willow_Bark_materials.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/44560
dc.identifier.urnURN:NBN:fi:aalto-202006013533
dc.language.isoenen
dc.publisherMDPI AG
dc.relation.ispartofseriesMaterialsen
dc.relation.ispartofseriesVolume 13, issue 4en
dc.rightsopenAccessen
dc.subject.keywordcarbon activationen_US
dc.subject.keywordelectrode formationen_US
dc.subject.keywordorganic electrolytesen_US
dc.subject.keywordsupercapacitorsen_US
dc.subject.keywordupcyclingen_US
dc.subject.keywordwillow barken_US
dc.titleWillow bark for sustainable energy storage systemsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files