Nanoscale thickness Octave-spanning coherent supercontinuum light generation
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2025
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
LIGHT: SCIENCE & APPLICATIONS, Volume 14, issue 1
Abstract
Coherent broadband light generation has attracted massive attention due to its numerous applications ranging from metrology, sensing, and imaging to communication. In general, spectral broadening is realized via third-order and higher-order nonlinear optical processes (e.g., self-phase modulation, Raman transition, four-wave mixing, multiwave mixing), which are typically weak and thus require a long interaction length and the phase matching condition to enhance the efficient nonlinear light-matter interaction for broad-spectrum generation. Here, for the first time, we report octave-spanning coherent light generation at the nanometer scale enabled by a phase-matching-free frequency down-conversion process. Up to octave-spanning coherent light generation with a −40dB spectral width covering from ~565 to 1906 nm is demonstrated in discreate manner via difference-frequency generation, a second-order nonlinear process in gallium selenide and niobium oxide diiodide crystals at the 100-nanometer scale. Compared with conventional coherent broadband light sources based on bulk materials, our demonstration is ~5 orders of magnitude thinner and requires ~3 orders of magnitude lower excitation power. Our results open a new way to possibly create compact, versatile and integrated ultra-broadband light sources.Description
| openaire: EC/H2020/820423/EU//S2QUIP | openaire: EC/H2020/834742/EU//ATOP | openaire: EC/H2020/872049/EU//IPN-Bio
Keywords
Other note
Citation
Das, S, Uddin, M G, Li, D, Wang, Y, Dai, Y, Toivonen, J, Hong, H, Liu, K & Sun, Z 2025, ' Nanoscale thickness Octave-spanning coherent supercontinuum light generation ', LIGHT: SCIENCE & APPLICATIONS, vol. 14, no. 1, 41 . https://doi.org/10.1038/s41377-024-01660-6