Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matching

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorKarakoç, Alpen_US
dc.contributor.authorPaltakari, Jounien_US
dc.contributor.authorTaciroglu, Ertugrulen_US
dc.contributor.departmentDepartment of Bioproducts and Biosystemsen
dc.contributor.groupauthorPaper Converting and Packagingen
dc.contributor.organizationUniversity of California, Los Angelesen_US
dc.date.accessioned2020-02-03T09:01:05Z
dc.date.available2020-02-03T09:01:05Z
dc.date.embargoinfo:eu-repo/date/embargoEnd/2021-02-02en_US
dc.date.issued2020-02-01en_US
dc.description.abstractImage processing methods combined with scanning techniques - for example, microscopy or microtomography - are now frequently being used for constructing realistic microstructure models that can be used as representative volume elements (RVEs) to better characterize heterogeneous material behavior. As a complement to those efforts, the present study introduces a computational homogenization method that bridges the RVE and material-scale properties in situ. To define the boundary conditions properly, an assignment problem is solved using Euclidean bipartite matching through which the boundary nodes of the RVE are matched with the control nodes of the rectangular prism bounding the RVE. The objective is to minimize the distances between the control and boundary nodes, which, when achieved, enables the bridging of scale-based features of both virtually generated and image-reconstructed domains. Following the minimization process, periodic boundary conditions can be enforced at the control nodes, and the resulting boundary value problem can be solved to determine the local constitutive material behavior. To verify the proposed method, virtually generated domains of closed-cell porous, spherical particle-reinforced, and fiber-reinforced composite materials are analyzed, and the results are compared with analytical Hashin-Shtrikman and Halpin-Tsai methods. The percent errors are within the ranges from 0.04% to 3.3%, from 2.7% to 14.9%, and from 0.5% to 13.2% for porous, particle-reinforced, and fiber-reinforced composite materials, respectively, indicating that the method has promising potential in the fields of image-based material characterization and computational homogenization.en
dc.description.versionPeer revieweden
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationKarakoç, A, Paltakari, J & Taciroglu, E 2020, ' Data-Driven Computational Homogenization Method Based on Euclidean Bipartite Matching ', Journal of Engineering Mechanics, vol. 146, no. 2, 04019132 . https://doi.org/10.1061/(ASCE)EM.1943-7889.0001708en
dc.identifier.doi10.1061/(ASCE)EM.1943-7889.0001708en_US
dc.identifier.issn0733-9399
dc.identifier.issn1943-7889
dc.identifier.otherPURE UUID: 7349c9fd-d4f4-4acf-8bfa-9dfb645176aden_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/7349c9fd-d4f4-4acf-8bfa-9dfb645176aden_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85076479019&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/40402536/CHEM_Karakoc_et_al_2020_Data_Driven_Computational_Homogenization_JourEngMec.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/42920
dc.identifier.urnURN:NBN:fi:aalto-202002032000
dc.language.isoenen
dc.publisherAmerican Society of Civil Engineers (ASCE)
dc.relation.ispartofseriesJournal of Engineering Mechanicsen
dc.relation.ispartofseriesVolume 146, issue 2en
dc.rightsopenAccessen
dc.subject.keywordAssignment problemen_US
dc.subject.keywordComputational homogenizationen_US
dc.subject.keywordMaterial characterizationen_US
dc.subject.keywordMicroscopyen_US
dc.subject.keywordMicrotomographyen_US
dc.subject.keywordRepresentative volume elementen_US
dc.titleData-Driven Computational Homogenization Method Based on Euclidean Bipartite Matchingen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi

Files