Capacity Planning for Vehicular Fog Computing

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.advisorAkgül, Özgür Umut, Nokia Corporation, Finland
dc.contributor.authorMao, Wencan
dc.contributor.departmentInformaatio- ja tietoliikennetekniikan laitosfi
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.labMobile Cloud Computingen
dc.contributor.schoolSähkötekniikan korkeakoulufi
dc.contributor.schoolSchool of Electrical Engineeringen
dc.contributor.supervisorYu, Xiao, Prof., Aalto University, Department of Communications and Networking, Finland; Ylä-Jääski, Antti, Prof., Aalto University, Department of Computer Science, Finland
dc.date.accessioned2023-10-20T09:00:05Z
dc.date.available2023-10-20T09:00:05Z
dc.date.defence2023-11-03
dc.date.issued2023
dc.description.abstractThe strict latency constraints of emerging vehicular applications make it unfeasible to forward sensing data from vehicles to the cloud for processing. Fog computing shortens the network latency by moving computation close to the location where the data is generated. Vehicular fog computing (VFC) proposes to complement stationary fog nodes co-located with cellular base stations (i.e., CFNs) with mobile ones carried by vehicles (i.e., VFNs) in a cost-efficient way. Previous works on VFC have mainly focused on optimizing the assignments of computing tasks among available fog nodes. However, capacity planning, which decides where and how much computing resources to deploy, remains an open and challenging issue. The complexity of this problem results from the spatio-temporal dynamics of vehicular traffic, the uncertainty in the computational demand, and the trade-off between the quality of service (QoS) and cost expenditure. This dissertation focuses on capacity planning for VFC. The objective of capacity planning is to maximize the techno-economic performance of VFC in terms of profit and QoS. To address the spatial-temporal dynamics of vehicular traffic, this dissertation presents a capacity planning solution for VFC that jointly decide the location and number of CFNs together with the route and schedule of VFNs carried by buses. Such a long-term planning solution is supposed to be updated seasonally according to the traffic pattern and bus timetables. To address the uncertainty in the computational resource demand, this dissertation presents two capacity planning solutions for VFC that dynamically schedule the routes of VFNs carried by taxis in an on-demand manner. Such a short-term planning solution is supposed to be updated within minutes or even seconds. To evaluate the techno-economic performance of our capacity planning solutions, an open-source simulator was developed that takes real-world data as inputs and simulates the VFC scenarios in urban environments. The results of this dissertation can contribute to the development of edge and fog computing, the Internet of Vehicles (IoV), and intelligent transportation systems (ITS).en
dc.format.extent68 + app. 70
dc.format.mimetypeapplication/pdfen
dc.identifier.isbn978-952-64-1482-9 (electronic)
dc.identifier.isbn978-952-64-1481-2 (printed)
dc.identifier.issn1799-4942 (electronic)
dc.identifier.issn1799-4934 (printed)
dc.identifier.issn1799-4934 (ISSN-L)
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/124188
dc.identifier.urnURN:ISBN:978-952-64-1482-9
dc.language.isoenen
dc.opnDustdar, Schahram, TU Wien, Austria
dc.publisherAalto Universityen
dc.publisherAalto-yliopistofi
dc.relation.haspart[Publication 1]: Wencan Mao, Ozgur Umut Akgul, Abbas Mehrabi, Byungjin Cho, Yu Xiao, and Antti Ylä-Jääski. Data-Driven Capacity Planning for Vehicular Fog Computing. Accepted for publication in IEEE Internet of Things Journal, Volume: 9, Issue: 15, Pages: 13179 - 13194, August 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202202021664. DOI: 10.1109/JIOT.2022.3143872
dc.relation.haspart[Publication 2]: Ozgur Umut Akgul, Wencan Mao, Byungjin Cho, and Yu Xiao. VFogSim: A Data-driven Platform for Simulating Vehicular Fog Computing Environment. Accepted for publication in IEEE Systems Journal, Volume: 17, Issue: 3, Pages: 5002 - 5013, September 2023. August 2022. Full text in Acris/Aaltodoc: http://urn.fi/URN:NBN:fi:aalto-202308114749. DOI: 10.1109/JSYST.2023.3286329
dc.relation.haspart[Publication 3]: Wencan Mao, Ozgur Umut Akgul, Byungjin Cho, Yu Xiao, and Antti Ylä-Jääski. On-demand Vehicular Fog Computing for Beyond 5G Networks. Accepted for publication in IEEE Transactions on Vehicular Technology, 1-17 pages, June 2023. August 2022
dc.relation.haspart[Publication 4]: Wencan Mao, Jiaming Yin, Yushan Liu, Byungjin Cho, Yang Chen,Weixiong Rao, and Yu Xiao. Multi-agent Reinforcement Learning-based Capacity Planning for On-demand Vehicular Fog Computing. Submitted to pre-review, June 2023. August 2022
dc.relation.ispartofseriesAalto University publication series DOCTORAL THESESen
dc.relation.ispartofseries172/2023
dc.revShi, Weisong, University of Delaware, USA
dc.revTsiropoulou, Eirini Eleni, University of New Mexico, USA
dc.subject.keywordcomputingen
dc.subject.keywordfog computingen
dc.subject.keywordcapacityen
dc.subject.otherElectrical engineeringen
dc.titleCapacity Planning for Vehicular Fog Computingen
dc.typeG5 Artikkeliväitöskirjafi
dc.type.dcmitypetexten
dc.type.ontasotDoctoral dissertation (article-based)en
dc.type.ontasotVäitöskirja (artikkeli)fi
local.aalto.acrisexportstatuschecked 2023-11-09_0912
local.aalto.archiveyes
local.aalto.formfolder2023_10_19_klo_12_52
local.aalto.infraELEC ComNet 5G/6G Research Platform

Files

Original bundle

Now showing 1 - 2 of 2
No Thumbnail Available
Name:
isbn9789526414829.pdf
Size:
1.36 MB
Format:
Adobe Portable Document Format
No Thumbnail Available
Name:
isbn9789526414829_errata.pdf
Size:
49.34 KB
Format:
Adobe Portable Document Format