Deep reinforcement learning for hybrid beamforming in multi-user millimeter wave wireless systems

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLizarraga, Enrique M.en_US
dc.contributor.authorMaggio, Gabriel N.en_US
dc.contributor.authorDowhuszko, Alexis A.en_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorWireless & Mobile Communicationsen
dc.contributor.organizationNational University of Cordobaen_US
dc.date.accessioned2021-09-08T06:53:37Z
dc.date.available2021-09-08T06:53:37Z
dc.date.issued2021-06-15en_US
dc.descriptionPublisher Copyright: © 2021 IEEE.
dc.description.abstractThis paper proposes a Machine Learning (ML) algorithm for hybrid beamforming in millimeter-wave wireless systems with multiple users. The time-varying nature of the wireless channels is taken into account when training the ML agent, which identifies the most convenient hybrid beamforming matrix with the aid of an algorithm that keeps the amount of signaling information low, avoids sudden changes in the analog beamformers radiation patterns when scheduling different users (flashlight interference), and simplifies the hybrid beamformer update decisions by adjusting the phases of specific analog beamforming vectors. The proposed hybrid beamforming algorithm relies on Deep Reinforcement Learning (DRL), which represents a practical approach to embed the online adaptation feature of the hybrid beamforming matrix into the channel states of continuous nature in which the multiuser MIMO system can be. Achievable data rate curves are used to analyze performance results, which validate the advantages of DRL algorithms with respect to solutions relying on conventional/deterministic optimization tools.en
dc.description.versionPeer revieweden
dc.format.extent5
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLizarraga, E M, Maggio, G N & Dowhuszko, A A 2021, Deep reinforcement learning for hybrid beamforming in multi-user millimeter wave wireless systems . in Proceedings of IEEE 93rd Vehicular Technology Conference, VTC 2021 ., 9449053, IEEE Vehicular Technology Conference, vol. 2021-April, IEEE, IEEE Vehicular Technology Conference, Helsinki, Finland, 25/04/2021 . https://doi.org/10.1109/VTC2021-Spring51267.2021.9449053en
dc.identifier.doi10.1109/VTC2021-Spring51267.2021.9449053en_US
dc.identifier.isbn978-1-7281-8964-2
dc.identifier.issn1090-3038
dc.identifier.issn2577-2465
dc.identifier.otherPURE UUID: 12ecea42-da11-46a7-93fd-0bad2abb2a9fen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/12ecea42-da11-46a7-93fd-0bad2abb2a9fen_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85112466125&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/67051604/ELEC_Lizarraga_etal_Deep_inforcement_learning_for_hybrid_beamforming_IEEE_VTC_2021_acceptedauthormanuscript.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/109821
dc.identifier.urnURN:NBN:fi:aalto-202109089049
dc.language.isoenen
dc.relation.ispartofIEEE Vehicular Technology Conferenceen
dc.relation.ispartofseriesProceedings of IEEE 93rd Vehicular Technology Conference, VTC 2021en
dc.relation.ispartofseriesIEEE Vehicular Technology Conference ; Volume 2021-Aprilen
dc.rightsopenAccessen
dc.subject.keywordDeep reinforcement learningen_US
dc.subject.keywordHybrid beamformingen_US
dc.subject.keywordMachine learningen_US
dc.subject.keywordMillimeter Waveen_US
dc.subject.keywordMultiuser MIMOen_US
dc.titleDeep reinforcement learning for hybrid beamforming in multi-user millimeter wave wireless systemsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionacceptedVersion

Files