Comparing MEG and EEG measurement set-ups for a brain-computer interface based on selective auditory attention

Loading...
Thumbnail Image

Access rights

openAccess
CC BY
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

12

Series

PloS one, Volume 20, issue 4 April, pp. 1-12

Abstract

Auditory attention modulates auditory evoked responses to target vs. non-target sounds in electro- and magnetoencephalographic (EEG/MEG) recordings. Employing whole-scalp MEG recordings and offline classification algorithms has been shown to enable high accuracy in tracking the target of auditory attention. Here, we investigated the decrease in accuracy when moving from the whole-scalp MEG to lower channel count EEG recordings and when training the classifier only from the initial or middle part of the recording instead of extracting training trials throughout the recording. To this end, we recorded simultaneous MEG (306 channels) and EEG (64 channels) in 18 healthy volunteers while presented with concurrent streams of spoken “Yes”/“No” words and instructed to attend to one of them. We then trained support vector machine classifiers to predict the target of attention from unaveraged trials of MEG/EEG. Classifiers were trained on 204 MEG gradiometers or on EEG with 64, 30, nine or three channels with trials extracted randomly across or only from the beginning of the recording. The highest classification accuracy, 73.2% on average across the participants for one-second trials, was obtained with MEG when the training trials were randomly extracted throughout the recording. With EEG, the accuracy was 69%, 69%, 66%, and 61% when using 64, 30, nine, and three channels, respectively. When training the classifiers with the same amount of data but extracted only from the beginning of the recording, the accuracy dropped by 11%-units on average, causing the result from the three-channel EEG to fall below the chance level. The combination of five consecutive trials partially compensated for this drop such that it was one to 5%-units. Although moving from whole-scalp MEG to EEG reduces classification accuracy, usable auditory-attention-based brain-computer interfaces can be implemented with a small set of optimally placed EEG channels.

Description

Publisher Copyright: © 2025 Kurmanavičiūtė et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Keywords

Other note

Citation

Kurmanavičiūtė, D, Kataja, H & Parkkonen, L 2025, 'Comparing MEG and EEG measurement set-ups for a brain-computer interface based on selective auditory attention', PloS one, vol. 20, no. 4 April, e0319328, pp. 1-12. https://doi.org/10.1371/journal.pone.0319328