Comparing MEG and EEG measurement set-ups for a brain-computer interface based on selective auditory attention
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
Major/Subject
Mcode
Degree programme
Language
en
Pages
12
Series
PloS one, Volume 20, issue 4 April, pp. 1-12
Abstract
Auditory attention modulates auditory evoked responses to target vs. non-target sounds in electro- and magnetoencephalographic (EEG/MEG) recordings. Employing whole-scalp MEG recordings and offline classification algorithms has been shown to enable high accuracy in tracking the target of auditory attention. Here, we investigated the decrease in accuracy when moving from the whole-scalp MEG to lower channel count EEG recordings and when training the classifier only from the initial or middle part of the recording instead of extracting training trials throughout the recording. To this end, we recorded simultaneous MEG (306 channels) and EEG (64 channels) in 18 healthy volunteers while presented with concurrent streams of spoken “Yes”/“No” words and instructed to attend to one of them. We then trained support vector machine classifiers to predict the target of attention from unaveraged trials of MEG/EEG. Classifiers were trained on 204 MEG gradiometers or on EEG with 64, 30, nine or three channels with trials extracted randomly across or only from the beginning of the recording. The highest classification accuracy, 73.2% on average across the participants for one-second trials, was obtained with MEG when the training trials were randomly extracted throughout the recording. With EEG, the accuracy was 69%, 69%, 66%, and 61% when using 64, 30, nine, and three channels, respectively. When training the classifiers with the same amount of data but extracted only from the beginning of the recording, the accuracy dropped by 11%-units on average, causing the result from the three-channel EEG to fall below the chance level. The combination of five consecutive trials partially compensated for this drop such that it was one to 5%-units. Although moving from whole-scalp MEG to EEG reduces classification accuracy, usable auditory-attention-based brain-computer interfaces can be implemented with a small set of optimally placed EEG channels.Description
Publisher Copyright: © 2025 Kurmanavičiūtė et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Keywords
Other note
Citation
Kurmanavičiūtė, D, Kataja, H & Parkkonen, L 2025, 'Comparing MEG and EEG measurement set-ups for a brain-computer interface based on selective auditory attention', PloS one, vol. 20, no. 4 April, e0319328, pp. 1-12. https://doi.org/10.1371/journal.pone.0319328