Density-functional calculations of defect formation energies using supercell methods

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorShim, Jihye
dc.contributor.authorLee, Eok Kyun
dc.contributor.authorLee, Y. -J.
dc.contributor.authorNieminen, Risto
dc.contributor.departmentKorea Advanced Institute of Science and Technology
dc.contributor.departmentDepartment of Applied Physics
dc.date.accessioned2018-05-22T14:54:08Z
dc.date.available2018-05-22T14:54:08Z
dc.date.issued2005-01
dc.description.abstractDensity-functional theory combined with periodic boundary conditions is used to systematically study the dependence of defect formation energy on supercell size for diamond containing vacancy and self-interstitial defects. We investigate the effect of the electrostatic energy due to the neutralization of charged supercells and the effect of the alignment of the valence band maximum (VBM) on the formation energy. For negatively charged vacancies and positively charged interstitials, the formation energies show a clear dependence on supercell size, and the electrostatic corrections agree with the trend given by the Makov-Payne scheme (Ref. 28). For positively charged vacancies and negatively charged interstitials, the size dependence and the electrostatic corrections are quite weak. An analysis of the spatial charge density distributions reveals that these large variations in electrostatic terms with defect type originate from differences in the screening of the defect-localized charge, as explained by using a simple electron-gas model. Several VBM alignment schemes are also tested. The best agreement between the calculated and asymptotically exact ionization levels is obtained when the levels are based on the formation energies referenced to the VBM of the defect-containing supercell.en
dc.description.versionPeer revieweden
dc.format.extent1-12
dc.format.mimetypeapplication/pdf
dc.identifier.citationShim , J , Lee , E K , Lee , Y -J & Nieminen , R 2005 , ' Density-functional calculations of defect formation energies using supercell methods : Defects in diamond ' , Physical Review B , vol. 71 , no. 3 , 035206 , pp. 1-12 . https://doi.org/10.1103/PhysRevB.71.035206en
dc.identifier.doi10.1103/PhysRevB.71.035206
dc.identifier.issn1098-0121
dc.identifier.issn1550-235X
dc.identifier.otherPURE UUID: fc830960-4600-4a3a-b22b-37ee1a5918b3
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/fc830960-4600-4a3a-b22b-37ee1a5918b3
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=15444365056&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/14664343/PhysRevB.71.035206.pdf
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/31291
dc.identifier.urnURN:NBN:fi:aalto-201805222731
dc.language.isoenen
dc.relation.ispartofseriesPHYSICAL REVIEW Ben
dc.relation.ispartofseriesVolume 71, issue 3en
dc.rightsopenAccessen
dc.titleDensity-functional calculations of defect formation energies using supercell methodsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files