Local electronic excitations induced by low-velocity light ion stopping in tungsten

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorPonomareva, Evgeniiaen_US
dc.contributor.authorPitthan, Eduardoen_US
dc.contributor.authorHoleňák, Radeken_US
dc.contributor.authorShams-Latifi, Jilaen_US
dc.contributor.authorKiely, Glen Pádraigen_US
dc.contributor.authorPrimetzhofer, Danielen_US
dc.contributor.authorSand, Andrea E.en_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorNuclear Materials and Engineeringen
dc.contributor.organizationUppsala Universityen_US
dc.contributor.organizationDepartment of Applied Physicsen_US
dc.date.accessioned2024-05-03T14:45:38Z
dc.date.available2024-05-03T14:45:38Z
dc.date.issued2024-04-15en_US
dc.descriptionPublisher Copyright: © 2024 American Physical Society.
dc.description.abstractAccurately predicting the electronic energy deposition of ions in materials is an important challenge in both fundamental and applied research. While employing ab initio simulations to investigate electronic stopping of ions in matter holds promise, its combined use with experimental measurements paves the way for obtaining reliable data. In this paper, we present a collaborative study using real-time time-dependent density functional theory and experimental methods to determine the electronic stopping power of hydrogen and helium ions in tungsten, a primary candidate material for future nuclear fusion devices. While calculated stopping powers in hyperchanneling trajectories are significantly lower than the experimental data, off-center and random geometries demonstrate a better agreement. We show that the deviation from velocity proportionality for both projectiles traversing the hyperchanneling directions can be explained through the existence of a threshold velocity leading to the activation of semicore states. Additionally, we analyze the pseudopotential and the trajectory dependence of computed electronic energy losses. It is demonstrated that the role of including semicore electrons varies depending on the velocity range. While these states play a crucial role at high projectile velocities by introducing additional dissipation channels, their impact diminishes in the low-velocity range. Finally, we introduce a simple expression that links electronic energy losses in different trajectories to local electron density, and we show that utilizing this formula allows for quite accurate predictions of stopping powers around the Bragg peak.en
dc.description.versionPeer revieweden
dc.format.extent9
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationPonomareva, E, Pitthan, E, Holeňák, R, Shams-Latifi, J, Kiely, G P, Primetzhofer, D & Sand, A E 2024, ' Local electronic excitations induced by low-velocity light ion stopping in tungsten ', Physical Review B, vol. 109, no. 16, 165123, pp. 1-9 . https://doi.org/10.1103/PhysRevB.109.165123en
dc.identifier.doi10.1103/PhysRevB.109.165123en_US
dc.identifier.issn2469-9950
dc.identifier.issn2469-9969
dc.identifier.otherPURE UUID: b13853fc-3999-498a-8c8b-8397fb9a3d46en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/b13853fc-3999-498a-8c8b-8397fb9a3d46en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85190341524&partnerID=8YFLogxKen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/144670036/Local_electronic_excitations_induced_by_low-velocity_light_ion_stopping_in_tungsten.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127669
dc.identifier.urnURN:NBN:fi:aalto-202405033290
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relation.ispartofseriesPhysical Review B
dc.relation.ispartofseriesVolume 109, issue 16, pp. 1-9
dc.rightsopenAccessen
dc.titleLocal electronic excitations induced by low-velocity light ion stopping in tungstenen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion
Files