Design, Performance, and Applications of AMMIS : A Novel Airborne Multimodular Imaging Spectrometer for High-Resolution Earth Observations
Loading...
Access rights
openAccess
CC BY-NC-ND
CC BY-NC-ND
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2025-04
Department
Department of Energy and Mechanical Engineering
Major/Subject
Mcode
Degree programme
Language
en
Pages
19
Series
Engineering, Volume 47, pp. 38-56
Abstract
Airborne hyperspectral imaging spectrometers have been used for Earth observation over the past four decades. Despite the high sensitivity of push-broom hyperspectral imagers, they experience limited swath and wavelength coverage. In this study, we report the development of a push-broom airborne multimodular imaging spectrometer (AMMIS) that spans ultraviolet (UV), visible near-infrared (VNIR), shortwave infrared (SWIR), and thermal infrared (TIR) wavelengths. As an integral part of China's High-Resolution Earth Observation Program, AMMIS is intended for civilian applications and for validating key technologies for future spaceborne hyperspectral payloads. It has been mounted on aircraft platforms such as Y-5, Y-12, and XZ-60. Since 2016, AMMIS has been used to perform more than 30 flight campaigns and gather more than 200 TB of hyperspectral data. This study describes the system design, calibration techniques, performance tests, flight campaigns, and applications of the AMMIS. The system integrates UV, VNIR, SWIR, and TIR modules, which can be operated in combination or individually based on the application requirements. Each module includes three spectrometers, utilizing field-of-view (FOV) stitching technology to achieve a 40° FOV, thereby enhancing operational efficiency. We designed advanced optical systems for all modules, particularly for the TIR module, and employed cryogenic optical technology to maintain optical system stability at 100 K. Both laboratory and in-flight calibrations were conducted to improve preprocessing accuracy and produce high-quality hyperspectral data. The AMMIS features more than 1400 spectral bands, with spectral sampling intervals of 0.1 nm for UV, 2.4 nm for VNIR, 3 nm for SWIR, and 32 nm for TIR. In addition, the instantaneous fields of view (IFoVs) for the four modules were 0.5, 0.25, 0.5, and 1 mrad, respectively, with the VNIR module achieving an IFoV of 0.125 mrad in the high-spatial-resolution mode. This study reports on land-cover surveys, pollution gas detection, mineral exploration, coastal water detection, and plant investigations conducted using AMMIS, highlighting its excellent performance. Furthermore, we present three hyperspectral datasets with diverse scene distributions and categories suitable for developing artificial intelligence algorithms. This study paves the way for next-generation airborne and spaceborne hyperspectral payloads and serves as a valuable reference for hyperspectral sensor designers and data users.Description
Publisher Copyright: © 2024 THE AUTHORS
Keywords
Artificial intelligence, Cryogenic optical technology, Earth observations, High spatial resolution, Push-broom hyperspectral imager
Other note
Citation
Jia, J, Wang, Y, Zheng, X, Yuan, L, Li, C, Cen, Y, Si, F, Lv, G, Wang, C, Wang, S, Zhang, C, Zhang, D, He, D, Zhuang, X, Han, G, Zhang, M, Hyyppä, J & Wang, J 2025, ' Design, Performance, and Applications of AMMIS : A Novel Airborne Multimodular Imaging Spectrometer for High-Resolution Earth Observations ', Engineering, vol. 47, pp. 38-56 . https://doi.org/10.1016/j.eng.2024.11.001