Thermoresponsive and biocompatible poly(N-isopropylacrylamide)-cellulose nanocrystals hydrogel for cell growth
Loading...
Access rights
openAccess
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
View publication in the Research portal
View/Open full text file from the Research portal
Other link related to publication
Date
2024-01-21
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
Materials Advances, Volume 5, issue 2, pp. 570-583
Abstract
We describe herein a poly(N-isopropylacrylamide) (PNIPAAm)-cellulose nanocrystals (CNC) hydrogel as thermoresponsive and biocompatible material. The hydrogel was generated with simple and robust mixing without need for complicated derivatization. The composition of the hydrogel was optimized for good stiffening and its biocompatibility was verified with fibroblast cells. The hydrogel was prepared using an osmotic dehydration method by tuning its water content and porosity without the incorporation of additional cross-linkers. The interaction of PNIPAAm and CNC was supported by the formation of a small endotherm at 30.5-33.5 °C observed with differential scanning calorimetry and a negative value for the enthalpy during the adsorption of both compounds by the isothermal titration calorimeter. The resulting PNIPAAm-CNC hydrogel (0.25 wt%; 0.5 wt%) showed better compatibility with fibroblasts than 0.5 wt% CNC alone. Our preliminary data indicates that it is possible to use the thermoresponsive characteristics of the material to influence cell behavior by temperature changes. PNIPAAm-CNC hydrogel offer a platform for the development of versatile and affordable plant-based materials for controllable 3D cell culture and the thermoresponsive nature of the material may help to develop novel applications for example in 3D-printing.Description
Funding Information: The authors would like to acknowledge the Academy of Finland for the financial support by project NanOrganoid (project 337580). Prof. Hytönen and Dr Leppiniemi acknowledge the Biocenter Finland and Tampere Imaging Facility for the service, and thank Niklas Kähkönen and Janne Kärnä (Tampere University) for excellent technical support. Prof. Thielemans and Dr Lombardo thank KU Leuven for funding through SL's PostDoctoral Mandate (grant PDMT 1/21/017) and project C14/18/061. Dr Trubetskaya acknowledges Nansenfondet Oslo Norway for the financial support (project 1051). Publisher Copyright: © 2023 RSC.
Keywords
Other note
Citation
Trubetskaya, A, Leppiniemi, J, Lipponen, S, Lombardo, S, Thielemans, W, Maloney, T, Pääkkönen, T, Kesari, K K, Ruokolainen, J, Hytönen, V P & Kontturi, E 2024, ' Thermoresponsive and biocompatible poly(N-isopropylacrylamide)-cellulose nanocrystals hydrogel for cell growth ', Materials Advances, vol. 5, no. 2, pp. 570-583 . https://doi.org/10.1039/d3ma00495c