Generation of ribosomal protein S1 mutants for improving of expression of difficult to translate mRNAs
Loading...
Access rights
openAccess
CC BY
CC BY
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Unless otherwise stated, all rights belong to the author. You may download, display and print this publication for Your own personal use. Commercial use is prohibited.
Date
2025-01-23
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
13
Series
Applied Microbiology and Biotechnology, Volume 109, issue 1
Abstract
Abstract: Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased. Here, we focused on one of the limiting processes—translation initiation. To that end, we created an operon-like screening system in E. coli to select mutants of the ribosomal protein S1 with more relaxed sequence requirements for 5’-untranslated regions of mRNAs. We created two mutation libraries of the ribosomal protein S1, one covering domains 3 and 4 (D3-D4) and the second covering domains 3 to 5 (D3-D5). Most mutants from library D3-D4 proofed to be specific for a particular UTR sequence and improved only expression from a single construct. Only mutant 3 from library D3-D4 led to increased expression of four different reporters improving fluorescence levels by up to 21%. Mutants isolated from D3-D5 library led up to 90% higher expression compared to the control, though the mutants with highest improvements exhibited a specialist phenotype. The most promising mutant, mutant 4, exhibited a generalist phenotype and showed increased expression in all six reporter strains compared to the control. This could indicate the potential for a more promiscuous translation initiation of metagenomic sequences in E. coli although at the price of smaller increases compared to specialist mutants. Key points: • An operon-like selection system allowed to isolate generalist and specialist S1 mutants. • S1 mutants improved translation of mRNAs with 5'-UTRs from metagenomic sequences. • Use of S1 mutants could increase coverage from metagenomic libraries in functional screens.Description
Publisher Copyright: © The Author(s) 2025.
Keywords
5’-untranslated region, Escherichia coli, Mutation library, Ribosomal protein S1, Translation initiation
Other note
Citation
Niemelä, L R K, Pásztor, A & Frey, A D 2025, ' Generation of ribosomal protein S1 mutants for improving of expression of difficult to translate mRNAs ', Applied Microbiology and Biotechnology, vol. 109, no. 1, 20 . https://doi.org/10.1007/s00253-025-13406-4