Electrostatic Discovery Atomic Force Microscopy

Loading...
Thumbnail Image

Access rights

openAccess
publishedVersion

URL

Journal Title

Journal ISSN

Volume Title

A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä

Major/Subject

Mcode

Degree programme

Language

en

Pages

9

Series

ACS Nano, Volume 16, issue 1, pp. 89-97

Abstract

While offering high resolution atomic and electronic structure, scanning probe microscopy techniques have found greater challenges in providing reliable electrostatic characterization on the same scale. In this work, we offer electrostatic discovery atomic force microscopy, a machine learning based method which provides immediate maps of the electrostatic potential directly from atomic force microscopy images with functionalized tips. We apply this to characterize the electrostatic properties of a variety of molecular systems and compare directly to reference simulations, demonstrating good agreement. This approach offers reliable atomic scale electrostatic maps on any system with minimal computational overhead.

Description

| openaire: EC/H2020/788185/EU//E-DESIGN | openaire: EC/H2020/845060/EU//QMKPFM | openaire: EC/H2020/897828/EU//EIM

Keywords

Other note

Citation

Oinonen, N, Xu, C, Alldritt, B, Canova, F F, Urtev, F, Cai, S, Krejčí, O, Kannala, J, Liljeroth, P, Foster, A S & Hapala, H 2022, 'Electrostatic Discovery Atomic Force Microscopy', ACS Nano, vol. 16, no. 1, pp. 89-97. https://doi.org/10.1021/acsnano.1c06840