Edge capacity planning for real time compute-intensive applications

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorNoreikis, Mariusen_US
dc.contributor.authorXiao, Yuen_US
dc.contributor.authorJiang, Yumingen_US
dc.contributor.departmentDepartment of Communications and Networkingen
dc.contributor.groupauthorMobile Cloud Computingen
dc.contributor.organizationNorwegian University of Science and Technologyen_US
dc.date.accessioned2019-11-07T12:04:39Z
dc.date.available2019-11-07T12:04:39Z
dc.date.issued2019-06-01en_US
dc.description| openaire: EC/H2020/825496/EU//5G-MOBIX
dc.description.abstractCloud computing is a major breakthrough in enabling multi-user scalable web services, process offloading and infrastructure cost savings. However, public clouds impose high network latency which became a bottleneck for real time applications such as mobile augmented reality applications. A widely accepted solution is to move latency sensitive services from the centralized cloud to the edge of the Internet, close to service users. An important prerequisite for deploying applications at the edge is determining initial required edge capacity. However, little has been done to provide reliable estimates of required computing capacity under Quality-of-Service (QoS) constraints. Differently from previous works that focus only on applications' CPU usage, in this paper, we propose a novel, queuing theory based edge capacity planning solution that takes into account both CPU and GPU usages of real-time compute-intensive applications. Our solution satisfies the QoS requirements in terms of response delays while minimizing the number of required edge computing nodes, assuming that the nodes are with fixed CPU/GPU capacity. We demonstrate the applicability and accuracy of our solution through extensive evaluation, including a case study using real-life applications. The results show that our solution maximizes the resource utilization through intelligent combinations of service requests, and can accurately estimate the minimal amount of CPU and GPU capacity required for satisfying the QoS requirements.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.identifier.citationNoreikis, M, Xiao, Y & Jiang, Y 2019, Edge capacity planning for real time compute-intensive applications. in Proceedings - 2019 IEEE International Conference on Fog Computing, ICFC 2019., 8821817, IEEE, pp. 175-184, IEEE International Conference on Fog Computing, Prague, Czech Republic, 24/06/2019. https://doi.org/10.1109/ICFC.2019.00029en
dc.identifier.doi10.1109/ICFC.2019.00029en_US
dc.identifier.isbn9781728132365
dc.identifier.otherPURE UUID: 674a34d9-9f0a-4fa0-9975-e1ab8cd87a29en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/674a34d9-9f0a-4fa0-9975-e1ab8cd87a29en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85072930866&partnerID=8YFLogxK
dc.identifier.otherPURE LINK: http://hdl.handle.net/11250/2638270en_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/41091
dc.identifier.urnURN:NBN:fi:aalto-201911076096
dc.language.isoenen
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/825496/EU//5G-MOBIXen_US
dc.relation.ispartofIEEE International Conference on Fog Computingen
dc.relation.ispartofseriesProceedings - 2019 IEEE International Conference on Fog Computing, ICFC 2019en
dc.relation.ispartofseriespp. 175-184en
dc.rightsopenAccessen
dc.subject.keywordAugmented realityen_US
dc.subject.keywordCapacity planningen_US
dc.subject.keywordEdge computingen_US
dc.subject.keywordGPUen_US
dc.subject.keywordQueueing theoryen_US
dc.titleEdge capacity planning for real time compute-intensive applicationsen
dc.typeA4 Artikkeli konferenssijulkaisussafi

Files