Energy-Efficient Quantum Computing
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Date
2017-04-14
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
Series
npj Quantum Information, Volume 3, issue 1, pp. 1-7
Abstract
In the near future, one of the major challenges in the realization of large-scale quantum computers operating at low temperatures is the management of harmful heat loads owing to thermal conduction of cabling and dissipation at cryogenic components. This naturally raises the question that what are the fundamental limitations of energy consumption in scalable quantum computing. In this work, we derive the greatest lower bound for the gate error induced by a single application of a bosonic drive mode of given energy. Previously, such an error type has been considered to be inversely proportional to the total driving power, but we show that this limitation can be circumvented by introducing a qubit driving scheme which reuses and corrects drive pulses. Specifically, our method serves to reduce the average energy consumption per gate operation without increasing the average gate error. Thus our work shows that precise, scalable control of quantum systems can, in principle, be implemented without the introduction of excessive heat or decoherence.Description
| openaire: EC/H2020/681311/EU//QUESS
Keywords
Qubit, Quantum gates, Entanglement
Other note
Citation
Ikonen, J, Salmilehto, J & Möttönen, M 2017, ' Energy-Efficient Quantum Computing ', npj Quantum Information, vol. 3, no. 1, 0015, pp. 1-7 . https://doi.org/10.1038/s41534-017-0015-5