Solitonic in-gap modes in a superconductor-quantum antiferromagnet interface
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Authors
Date
2020-06-16
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
PHYSICAL REVIEW RESEARCH, Volume 2, issue 2
Abstract
Bound states at interfaces between superconductors and other materials are a powerful tool to characterize the nature of the involved systems and to engineer elusive quantum excitations. In-gap excitations of conventional s-wave superconductors occur, for instance, at magnetic impurities with net magnetic moment breaking timereversal symmetry. Here we show that interfaces between a superconductor and a quantum antiferromagnet can host robust in-gap excitations, without breaking time-reversal symmetry. We illustrate this phenomenon in a one-dimensional model system with an interface between a conventional s-wave superconductor and a one-dimensional Mott insulator described by a standard Hubbard model. This genuine many-body problem is solved exactly by employing a combination of kernel polynomial and tensor network techniques. We unveil the nature of such zero modes by showing that they can be adiabatically connected to solitonic solutions between a superconductor and a mean-field antiferromagnet. Our results put forward a new class of in-gap excitations between superconductors and a disordered quantum spin phase, including quantum spin-liquids, that can be relevant for a wider range of heterostructures.Description
Keywords
DEPENDENCE, STATES
Other note
Citation
Lado, J L & Sigrist, M 2020, ' Solitonic in-gap modes in a superconductor-quantum antiferromagnet interface ', PHYSICAL REVIEW RESEARCH, vol. 2, no. 2, 023347 . https://doi.org/10.1103/PhysRevResearch.2.023347