Accelerated stabilization of coherent photon states
Loading...
Access rights
openAccess
publishedVersion
URL
Journal Title
Journal ISSN
Volume Title
A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Authors
Date
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
9
Series
New Journal of Physics, Volume 20, issue 10
Abstract
Control and utilization of coherent states of microwave photons is a ubiquitous requirement for the present and near-future implementations of solid-state quantum computers. The rate at which the photon state responds to external driving is limited by the relaxation rate of the storage resonator, which poses a trade-off between fast control and long storage time. Here, we present a control scheme that is designed to drive an unknown photon state to a desired coherent state much faster than the resonator decay rate. Our method utilizes a tunable environment which acts on an ancillary qubit coupled to the resonator. By periodically resetting the qubit and tuning it into resonance with the resonator, possible photon loss and dephasing of the resonator mode are corrected without measurements or active feedback. In general, our method is suitable for accelerating the control of coherent states in high-fidelity resonators.Description
| openaire: EC/H2020/681311/EU//QUESS
Other note
Citation
Ikonen, J & Möttönen, M 2018, 'Accelerated stabilization of coherent photon states', New Journal of Physics, vol. 20, no. 10, 103047. https://doi.org/10.1088/1367-2630/aae621