System-environment correlations in qubit initialization and control

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorTuorila, Janien_US
dc.contributor.authorStockburger, Juergenen_US
dc.contributor.authorAla-Nissila, Tapioen_US
dc.contributor.authorAnkerhold, Joachimen_US
dc.contributor.authorMottonen, Mikkoen_US
dc.contributor.departmentDepartment of Applied Physicsen
dc.contributor.groupauthorMultiscale Statistical and Quantum Physicsen
dc.contributor.groupauthorCentre of Excellence in Quantum Technology, QTFen
dc.contributor.groupauthorQuantum Computing and Devicesen
dc.contributor.organizationUlm Universityen_US
dc.date.accessioned2021-01-25T10:11:35Z
dc.date.available2021-01-25T10:11:35Z
dc.date.issued2019-08-09en_US
dc.description| openaire: EC/H2020/681311/EU//QUESS
dc.description.abstractThe impressive progress in fabricating and controlling superconducting devices for quantum information processing has reached a level where reliable theoretical predictions need to account for quantum correlations that are not captured by the conventional modeling of contemporary quantum computers. This applies particularly to the qubit initialization as the process which crucially limits typical operation times. Here, we employ numerically exact methods to study realistic implementations of a transmon qubit embedded in electromagnetic environments focusing on the most important system-reservoir correlation effects such as the Lamb shift and entanglement. For the qubit initialization we find a fundamental trade-off between speed and accuracy which sets intrinsic constraints in the optimization of future reset protocols. Instead, the fidelities of quantum logic gates can be sufficiently accurately predicted by standard treatments. Our results can be used to accurately predict the performance of specific setups and also to guide future experiments in probing low-temperature properties of qubit reservoirs.en
dc.description.versionPeer revieweden
dc.format.extent13
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationTuorila, J, Stockburger, J, Ala-Nissila, T, Ankerhold, J & Mottonen, M 2019, 'System-environment correlations in qubit initialization and control', Physical Review Research, vol. 1, no. 1, 013004. https://doi.org/10.1103/PhysRevResearch.1.013004en
dc.identifier.doi10.1103/PhysRevResearch.1.013004en_US
dc.identifier.issn2643-1564
dc.identifier.otherPURE UUID: 51e768d5-1159-4d42-891e-348298fe6c2cen_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/51e768d5-1159-4d42-891e-348298fe6c2cen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/55137688/Tuorila_System_environment.PhysRevResearch.1.013004.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/102145
dc.identifier.urnURN:NBN:fi:aalto-202101251455
dc.language.isoenen
dc.publisherAmerican Physical Society
dc.relationinfo:eu-repo/grantAgreement/EC/H2020/681311/EU//QUESSen_US
dc.relation.ispartofseriesPhysical Review Researchen
dc.relation.ispartofseriesVolume 1, issue 1en
dc.rightsopenAccessen
dc.subject.keywordQUANTUMen_US
dc.subject.keywordFLUCTUATIONSen_US
dc.subject.keywordDECOHERENCEen_US
dc.subject.keywordDYNAMICSen_US
dc.subject.keywordCIRCUITen_US
dc.titleSystem-environment correlations in qubit initialization and controlen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files