Massively Parallel Correlation Clustering in Bounded Arboricity Graphs
Loading...
Access rights
openAccess
URL
Journal Title
Journal ISSN
Volume Title
A4 Artikkeli konferenssijulkaisussa
This publication is imported from Aalto University research portal.
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
View publication in the Research portal (opens in new window)
View/Open full text file from the Research portal (opens in new window)
Other link related to publication (opens in new window)
Date
2021
Department
Major/Subject
Mcode
Degree programme
Language
en
Pages
18
Series
35th International Symposium on Distributed Computing, DISC 2021, Leibniz International Proceedings in Informatics, LIPIcs, Volume 209
Abstract
Identifying clusters of similar elements in a set is a common task in data analysis. With the immense growth of data and physical limitations on single processor speed, it is necessary to find efficient parallel algorithms for clustering tasks. In this paper, we study the problem of correlation clustering in bounded arboricity graphs with respect to the Massively Parallel Computation (MPC) model. More specifically, we are given a complete graph where the edges are either positive or negative, indicating whether pairs of vertices are similar or dissimilar. The task is to partition the vertices into clusters with as few disagreements as possible. That is, we want to minimize the number of positive inter-cluster edges and negative intra-cluster edges. Consider an input graph G on n vertices such that the positive edges induce a λ-arboric graph. Our main result is a 3-approximation (in expectation) algorithm to correlation clustering that runs in (log λ ⋅ poly(log log n)) MPC rounds in the strongly sublinear memory regime. This is obtained by combining structural properties of correlation clustering on bounded arboricity graphs with the insights of Fischer and Noever (SODA '18) on randomized greedy MIS and the PIVOT algorithm of Ailon, Charikar, and Newman (STOC '05). Combined with known graph matching algorithms, our structural property also implies an exact algorithm and algorithms with worst case (1+ε)-approximation guarantees in the special case of forests, where λ = 1.Description
Keywords
Other note
Citation
Cambus, M, Choo, D, Miikonen, H & Uitto, J 2021, Massively Parallel Correlation Clustering in Bounded Arboricity Graphs . in S Gilbert (ed.), 35th International Symposium on Distributed Computing, DISC 2021 ., 15, Leibniz International Proceedings in Informatics, LIPIcs, vol. 209, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, International Symposium on Distributed Computing, Freiburg, Germany, 04/10/2021 . https://doi.org/10.4230/LIPIcs.DISC.2021.15