Towards Mode Balancing of Generative Models via Diversity Weights
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Berns, Sebastian | en_US |
dc.contributor.author | Colton, Simon | en_US |
dc.contributor.author | Guckelsberger, Christian | en_US |
dc.contributor.department | Department of Computer Science | en |
dc.contributor.editor | Pease, Alison | en_US |
dc.contributor.editor | Cunha, Joao Miguel | en_US |
dc.contributor.editor | Ackerman, Maya | en_US |
dc.contributor.editor | Brown, Daniel G. | en_US |
dc.contributor.groupauthor | Professorship Guckelsberger Christian | en |
dc.contributor.groupauthor | Computer Science Professors | en |
dc.contributor.organization | Queen Mary University of London | en_US |
dc.date.accessioned | 2023-10-11T09:37:27Z | |
dc.date.available | 2023-10-11T09:37:27Z | |
dc.date.issued | 2023 | en_US |
dc.description.abstract | Large data-driven image models are extensively used to support creative and artistic work. Under the currently predominant distribution-fitting paradigm, a dataset is treated as ground truth to be approximated as closely as possible. Yet, many creative applications demand a diverse range of output, and creators often strive to actively diverge from a given data distribution. We argue that an adjustment of modelling objectives, from pure mode coverage towards mode balancing, is necessary to accommodate the goal of higher output diversity. We present diversity weights, a training scheme that increases a model's output diversity by balancing the modes in the training dataset. First experiments in a controlled setting demonstrate the potential of our method. We discuss connections of our approach to diversity, equity, and inclusion in generative machine learning more generally, and computational creativity specifically. An implementation of our algorithm is available at https://github.com/sebastianberns/diversity-weights. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 10 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Berns, S, Colton, S & Guckelsberger, C 2023, Towards Mode Balancing of Generative Models via Diversity Weights. in A Pease, J M Cunha, M Ackerman & D G Brown (eds), Proceedings of the 14th International Conference on Computational Creativity (ICCC 2023)., 36, Association for Computational Creativity, International Conference on Computational Creativity, Waterloo, Ontario, Canada, 19/06/2023. < https://computationalcreativity.net/iccc23/papers/ICCC-2023_paper_36.pdf > | en |
dc.identifier.isbn | 978-989-54160-5-9 | |
dc.identifier.other | PURE UUID: f04f10e1-ed2b-4972-bd3f-2f3111acf379 | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/f04f10e1-ed2b-4972-bd3f-2f3111acf379 | en_US |
dc.identifier.other | PURE LINK: https://computationalcreativity.net/iccc23/Proceedings_of_the_International_Conference_on_Computational_Creativity_2023.pdf | en_US |
dc.identifier.other | PURE LINK: https://computationalcreativity.net/iccc23/papers/ICCC-2023_paper_36.pdf | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/124181529/SCI_Berns_etal_ICCC_2023.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/123952 | |
dc.identifier.urn | URN:NBN:fi:aalto-202310116299 | |
dc.language.iso | en | en |
dc.relation.ispartof | International Conference on Computational Creativity | en |
dc.relation.ispartofseries | Proceedings of the 14th International Conference on Computational Creativity (ICCC 2023) | en |
dc.rights | openAccess | en |
dc.title | Towards Mode Balancing of Generative Models via Diversity Weights | en |
dc.type | A4 Artikkeli konferenssijulkaisussa | fi |
dc.type.version | publishedVersion |