Towards Mode Balancing of Generative Models via Diversity Weights

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorBerns, Sebastianen_US
dc.contributor.authorColton, Simonen_US
dc.contributor.authorGuckelsberger, Christianen_US
dc.contributor.departmentDepartment of Computer Scienceen
dc.contributor.editorPease, Alisonen_US
dc.contributor.editorCunha, Joao Miguelen_US
dc.contributor.editorAckerman, Mayaen_US
dc.contributor.editorBrown, Daniel G.en_US
dc.contributor.groupauthorProfessorship Guckelsberger Christianen
dc.contributor.groupauthorComputer Science Professorsen
dc.contributor.organizationQueen Mary University of Londonen_US
dc.date.accessioned2023-10-11T09:37:27Z
dc.date.available2023-10-11T09:37:27Z
dc.date.issued2023en_US
dc.description.abstractLarge data-driven image models are extensively used to support creative and artistic work. Under the currently predominant distribution-fitting paradigm, a dataset is treated as ground truth to be approximated as closely as possible. Yet, many creative applications demand a diverse range of output, and creators often strive to actively diverge from a given data distribution. We argue that an adjustment of modelling objectives, from pure mode coverage towards mode balancing, is necessary to accommodate the goal of higher output diversity. We present diversity weights, a training scheme that increases a model's output diversity by balancing the modes in the training dataset. First experiments in a controlled setting demonstrate the potential of our method. We discuss connections of our approach to diversity, equity, and inclusion in generative machine learning more generally, and computational creativity specifically. An implementation of our algorithm is available at https://github.com/sebastianberns/diversity-weights.en
dc.description.versionPeer revieweden
dc.format.extent10
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationBerns, S, Colton, S & Guckelsberger, C 2023, Towards Mode Balancing of Generative Models via Diversity Weights. in A Pease, J M Cunha, M Ackerman & D G Brown (eds), Proceedings of the 14th International Conference on Computational Creativity (ICCC 2023)., 36, Association for Computational Creativity, International Conference on Computational Creativity, Waterloo, Ontario, Canada, 19/06/2023. < https://computationalcreativity.net/iccc23/papers/ICCC-2023_paper_36.pdf >en
dc.identifier.isbn978-989-54160-5-9
dc.identifier.otherPURE UUID: f04f10e1-ed2b-4972-bd3f-2f3111acf379en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/f04f10e1-ed2b-4972-bd3f-2f3111acf379en_US
dc.identifier.otherPURE LINK: https://computationalcreativity.net/iccc23/Proceedings_of_the_International_Conference_on_Computational_Creativity_2023.pdfen_US
dc.identifier.otherPURE LINK: https://computationalcreativity.net/iccc23/papers/ICCC-2023_paper_36.pdfen_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/124181529/SCI_Berns_etal_ICCC_2023.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/123952
dc.identifier.urnURN:NBN:fi:aalto-202310116299
dc.language.isoenen
dc.relation.ispartofInternational Conference on Computational Creativityen
dc.relation.ispartofseriesProceedings of the 14th International Conference on Computational Creativity (ICCC 2023)en
dc.rightsopenAccessen
dc.titleTowards Mode Balancing of Generative Models via Diversity Weightsen
dc.typeA4 Artikkeli konferenssijulkaisussafi
dc.type.versionpublishedVersion

Files