Practical approaches to group-level multi-objective Bayesian optimization in interaction technique design
dc.contributor | Aalto-yliopisto | fi |
dc.contributor | Aalto University | en |
dc.contributor.author | Liao, Yi-Chi | en_US |
dc.contributor.author | Mo, George B. | en_US |
dc.contributor.author | Dudley, John J. | en_US |
dc.contributor.author | Cheng, Chun Lien | en_US |
dc.contributor.author | Chan, Liwei | en_US |
dc.contributor.author | Kristensson, Per Ola | en_US |
dc.contributor.author | Oulasvirta, Antti | en_US |
dc.contributor.department | Department of Information and Communications Engineering | en |
dc.contributor.groupauthor | User Interfaces | en |
dc.contributor.organization | University of Cambridge | en_US |
dc.contributor.organization | National Yang Ming Chiao Tung University | en_US |
dc.date.accessioned | 2024-10-30T06:35:26Z | |
dc.date.available | 2024-10-30T06:35:26Z | |
dc.date.issued | 2024-01 | en_US |
dc.description.abstract | Designing interaction techniques for end-users often involves exploring vast design spaces while balancing many objectives. Bayesian optimization offers a principled human-in-the-loop method for selecting designs for evaluation to efficiently explore such design spaces. To date, the application of Bayesian optimization in a human-in-the-loop setting has largely been restricted to optimization, or customization, of interaction techniques for individual user needs. In practice, interaction techniques are typically designed for a target population or group of users, with the goal is to produce a design that works well for most users. To accommodate this common use case in interaction technique design, we introduce two practical approaches that facilitate multi-objective Bayesian optimization at the group level. Specifically, our approaches streamline the process of (1) deriving designs suitable for a group of users from data collected in individual user evaluations; and (2) deriving an initialization from group data to improve the efficiency of design optimization for new users. We demonstrate the advantages of these practical approaches in two multi-phase user studies involving the design of non-trivial interaction techniques. | en |
dc.description.version | Peer reviewed | en |
dc.format.extent | 19 | |
dc.format.mimetype | application/pdf | en_US |
dc.identifier.citation | Liao, Y-C, Mo, G B, Dudley, J J, Cheng, C L, Chan, L, Kristensson, P O & Oulasvirta, A 2024, ' Practical approaches to group-level multi-objective Bayesian optimization in interaction technique design ', Collective Intelligence, vol. 3, no. 1 . https://doi.org/10.1177/26339137241241313 | en |
dc.identifier.doi | 10.1177/26339137241241313 | en_US |
dc.identifier.issn | 2633-9137 | |
dc.identifier.other | PURE UUID: d046e95c-f20b-48d8-93f2-ef6b41d07b6d | en_US |
dc.identifier.other | PURE ITEMURL: https://research.aalto.fi/en/publications/d046e95c-f20b-48d8-93f2-ef6b41d07b6d | en_US |
dc.identifier.other | PURE FILEURL: https://research.aalto.fi/files/162857788/liao-et-al-2024-practical-approaches-to-group-level-multi-objective-bayesian-optimization-in-interaction-technique.pdf | en_US |
dc.identifier.uri | https://aaltodoc.aalto.fi/handle/123456789/131463 | |
dc.identifier.urn | URN:NBN:fi:aalto-202410306978 | |
dc.language.iso | en | en |
dc.publisher | SAGE Publications | |
dc.relation.ispartofseries | Collective intelligence | |
dc.relation.ispartofseries | Volume 3, issue 1 | |
dc.rights | openAccess | en |
dc.title | Practical approaches to group-level multi-objective Bayesian optimization in interaction technique design | en |
dc.type | A1 Alkuperäisartikkeli tieteellisessä aikakauslehdessä | fi |
dc.type.version | publishedVersion |