Practical approaches to group-level multi-objective Bayesian optimization in interaction technique design

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorLiao, Yi-Chien_US
dc.contributor.authorMo, George B.en_US
dc.contributor.authorDudley, John J.en_US
dc.contributor.authorCheng, Chun Lienen_US
dc.contributor.authorChan, Liweien_US
dc.contributor.authorKristensson, Per Olaen_US
dc.contributor.authorOulasvirta, Anttien_US
dc.contributor.departmentDepartment of Information and Communications Engineeringen
dc.contributor.groupauthorUser Interfacesen
dc.contributor.organizationUniversity of Cambridgeen_US
dc.contributor.organizationNational Yang Ming Chiao Tung Universityen_US
dc.date.accessioned2024-10-30T06:35:26Z
dc.date.available2024-10-30T06:35:26Z
dc.date.issued2024-01en_US
dc.description.abstractDesigning interaction techniques for end-users often involves exploring vast design spaces while balancing many objectives. Bayesian optimization offers a principled human-in-the-loop method for selecting designs for evaluation to efficiently explore such design spaces. To date, the application of Bayesian optimization in a human-in-the-loop setting has largely been restricted to optimization, or customization, of interaction techniques for individual user needs. In practice, interaction techniques are typically designed for a target population or group of users, with the goal is to produce a design that works well for most users. To accommodate this common use case in interaction technique design, we introduce two practical approaches that facilitate multi-objective Bayesian optimization at the group level. Specifically, our approaches streamline the process of (1) deriving designs suitable for a group of users from data collected in individual user evaluations; and (2) deriving an initialization from group data to improve the efficiency of design optimization for new users. We demonstrate the advantages of these practical approaches in two multi-phase user studies involving the design of non-trivial interaction techniques.en
dc.description.versionPeer revieweden
dc.format.extent19
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationLiao, Y-C, Mo, G B, Dudley, J J, Cheng, C L, Chan, L, Kristensson, P O & Oulasvirta, A 2024, ' Practical approaches to group-level multi-objective Bayesian optimization in interaction technique design ', Collective Intelligence, vol. 3, no. 1 . https://doi.org/10.1177/26339137241241313en
dc.identifier.doi10.1177/26339137241241313en_US
dc.identifier.issn2633-9137
dc.identifier.otherPURE UUID: d046e95c-f20b-48d8-93f2-ef6b41d07b6den_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/d046e95c-f20b-48d8-93f2-ef6b41d07b6den_US
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/162857788/liao-et-al-2024-practical-approaches-to-group-level-multi-objective-bayesian-optimization-in-interaction-technique.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/131463
dc.identifier.urnURN:NBN:fi:aalto-202410306978
dc.language.isoenen
dc.publisherSAGE Publications
dc.relation.ispartofseriesCollective intelligence
dc.relation.ispartofseriesVolume 3, issue 1
dc.rightsopenAccessen
dc.titlePractical approaches to group-level multi-objective Bayesian optimization in interaction technique designen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files