Structural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of ductile irons in different environments

dc.contributorAalto-yliopistofi
dc.contributorAalto Universityen
dc.contributor.authorUkoba, Kingsleyen_US
dc.contributor.authorAkinribide, Ojo J.en_US
dc.contributor.authorAdeleke, Oluwatobien_US
dc.contributor.authorAkinwamide, Samuel O.en_US
dc.contributor.authorJen, Tien Chienen_US
dc.contributor.authorOlubambi, Peter A.en_US
dc.contributor.departmentDepartment of Energy and Mechanical Engineeringen
dc.contributor.organizationUniversity of Johannesburgen_US
dc.date.accessioned2024-05-22T05:47:34Z
dc.date.available2024-05-22T05:47:34Z
dc.date.issued2024-07en_US
dc.descriptionPublisher Copyright: © 2024 The Authors
dc.description.abstractDuctile iron (DI) samples were immersed in near-neutral, alkaline sodium hydroxide (NaOH), and sodium chloride (NaCl) environments for 180 days. The influence of microstructure on the corrosion resistance of three DI specimens was investigated. Microstructures, electrochemical measurements, and the characterization of the corroded surfaces were analyzed. The experimental results from this study were used to validate a model generated from hybrid adaptive neuro-fuzzy inferences system-particle swarm optimization (ANFIS-PSO) algorithms. The hybrid ANFIS-PSO modelling technique was improvised for a detailed evaluation of corrosion rate of ductile cast iron materials in different environments. The integrated hybrid ANFIS-PSO model revealed a sharp rise in localized corrosion caused by chloride-induced structural deterioration at the nanoscale for some of the grains. The performance results revealed that the fuzzy c-mean (FCM) clustering outperformed other clustering approach in the neuro-fuzzy model. Accuracy values of 92.9% and 93.7% were recorded for the training phase of ANFIS-FCM and ANFIS-PSO-FCM respectively for corrosion rates. The percentage error of the ANFIS-PSO predictions is significantly lower than the ANFIS-standalone prediction. This shows that the ANFIS-PSO with FCM approach is a better model for predicting corrosion rates. This will contribute to the body of knowledge for ductile iron, corrosion, and corrosion modelling using machine learning.en
dc.description.versionPeer revieweden
dc.format.extent14
dc.format.mimetypeapplication/pdfen_US
dc.identifier.citationUkoba, K, Akinribide, O J, Adeleke, O, Akinwamide, S O, Jen, T C & Olubambi, P A 2024, 'Structural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of ductile irons in different environments', Kuwait Journal of Science, vol. 51, no. 3, 100234. https://doi.org/10.1016/j.kjs.2024.100234en
dc.identifier.doi10.1016/j.kjs.2024.100234en_US
dc.identifier.issn2307-4108
dc.identifier.issn2307-4116
dc.identifier.otherPURE UUID: 071bc51c-f976-4955-8860-f8da737d49c2en_US
dc.identifier.otherPURE ITEMURL: https://research.aalto.fi/en/publications/071bc51c-f976-4955-8860-f8da737d49c2en_US
dc.identifier.otherPURE LINK: http://www.scopus.com/inward/record.url?scp=85191314030&partnerID=8YFLogxK
dc.identifier.otherPURE FILEURL: https://research.aalto.fi/files/145996408/1-s2.0-S2307410824000592-main.pdfen_US
dc.identifier.urihttps://aaltodoc.aalto.fi/handle/123456789/127888
dc.identifier.urnURN:NBN:fi:aalto-202405223493
dc.language.isoenen
dc.publisherElsevier
dc.relation.ispartofseriesKuwait Journal of Scienceen
dc.relation.ispartofseriesVolume 51, issue 3en
dc.rightsopenAccessen
dc.subject.keywordANFIS-PSOen_US
dc.subject.keywordCorrosionen_US
dc.subject.keywordductile ironen_US
dc.subject.keywordInhibitoren_US
dc.subject.keywordMachine learningen_US
dc.subject.keywordWeight lossen_US
dc.titleStructural integrity and hybrid ANFIS-PSO modeling of the corrosion rate of ductile irons in different environmentsen
dc.typeA1 Alkuperäisartikkeli tieteellisessä aikakauslehdessäfi
dc.type.versionpublishedVersion

Files